Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic molecular nonlinear optical

Optical Properties of PDA Microcrystals of Different Sizes. The effect of average molecular weight on the functions of PDA microcrystals is expected to be important from the point of view that the electronic and nonlinear optical properties of quantum-wire and quantum-dot structures differ significantly from those of bulk crystals. An enhancement of several orders of magnitude in third-order optical nonlinearities has been predicted in the case of quantized microaystallites. [Pg.189]

IRRAS is the leading spectroscopy for characterizing the structure and properties of monolayers adsorbed at the air-water interface (Section 4.8). Research activity in this area [332-334] is largely motivated by the potential applications of transferred Langmuir (L) monolayers in molecular electronics and nonlinear optics and by fundamental interest in the organization and dynamics of quasi... [Pg.544]

Nanometer sized semiconductor dusters, expected to have properties different from those of molecular and bulk semiconductors of the same composition, represent a new class of materials. Interest in their preparation and potential applications as photocatalysts and device components used in quantum electronics and nonlinear optics is growing rapidly. Isolated, so-called nanophase semiconductors can be considered as zero and one dimensional quantum dots and quantum wires. Their electronic, optical, and photochemical properties change with cluster size. Wider electronic band gaps and new absorption maxima in the electronic spectra have been observed as the size of these materials decreases and have been interpreted as quantum size effects. For example, as the dimensions of the semiconductor particle are reduced, a shift to higher energy in the absorption spectrum relative to that of the bulk is generally observed. [Pg.355]

Liquid-crystalline CT interactions have also attracted increasing interest in the field of soft materials related to synthetic metals, organic semiconductors, molecular electronics, and nonlinear optics. In systems composed... [Pg.2806]

The wealth of information obtained on the general principles of crystalline bacterial cell surface layers, particularly on their structure, assembly, surface, and molecular sieving properties have revealed a broad application potential. Above all, the repetitive physicochemical properties down to the subnanometer-scale make S-layer lattices unique self-assembly structures for functionalization of surfaces and interfaces down to the ultimate resolution limit. S-layers that have been recrystallized on solid substrates can be used as immobilization matrices for a great variety of functional molecules or as templates for the fabrication of ordered and precisely located nanometer-scale particles as required for the production of biosensors, diagnostics, molecular electronics, and nonlinear optics [2,3,6]. [Pg.611]

Many of the fiindamental physical and chemical processes at surfaces and interfaces occur on extremely fast time scales. For example, atomic and molecular motions take place on time scales as short as 100 fs, while surface electronic states may have lifetimes as short as 10 fs. With the dramatic recent advances in laser tecluiology, however, such time scales have become increasingly accessible. Surface nonlinear optics provides an attractive approach to capture such events directly in the time domain. Some examples of application of the method include probing the dynamics of melting on the time scale of phonon vibrations [82], photoisomerization of molecules [88], molecular dynamics of adsorbates [89, 90], interfacial solvent dynamics [91], transient band-flattening in semiconductors [92] and laser-induced desorption [93]. A review article discussing such time-resolved studies in metals can be found in... [Pg.1296]

Finally, feasibility studies have clearly demonstrated that S-layer technologies have a great potential for nanopatteming of snrfaces, biological templating, and the formation of arrays of metal clusters, as required in nonlinear optics and molecular electronics. [Pg.384]

One of the advances in the field of PET is the design of molecular devices, in which D and A pairs are ingeniously linked by covalent bridges (B) to form D-B-A dyads. Electron transfers between D and A across B in a controlled manner may thus display useful functionalities, such as molecular rectifiers [25], switches [26], biosensors [27], photovoltaic cells [28], and nonlinear optical materials [29]. Spacers that have been utilized are versatile, including small molecules, such as cyclohexane [30], adamantane [31], bicyclo[2.2.2]octane [32], steroids [33], and oligomers of... [Pg.229]

The n-electron excitations are viewed as occuring on molecular sites weakly coupled to their neigbors and providing sources of nonlinear optical response through the on-site microscopic second order nonlinear electronic susceptibility... [Pg.4]

However, its was found possible to infer all four microscopic tensor coefficients from macroscopic crystalline values and this impossibility could be related to the molecular unit anisotropy. It can be shown that the molecular unit anisotropy imposes structural relations between coefficients of macroscopic nonlinearities, in addition to the usual relations resulting from crystal symmetry. Such additional relations appear for crystal point group 2,ra and 3. For the monoclinic point group 2, this relation has been tested in the case of MAP crystals, and excellent agreement has been found, triten taking into account crystal structure data (24), and nonlinear optical measurements on single crystal (19). This approach has been extended to the electrooptic tensor (4) and should lead to similar relations, trtten the electrooptic effect is primarily of electronic origin. [Pg.89]

Theoretical estimations and experimental investigations tirmly established (J ) that large electron delocalization is a perequisite for large values of the nonlinear optical coefficients and this can be met with the ir-electrons in conjugated molecules and polymers where also charge asymmetry can be adequately introduced in order to obtain non-centrosymmetric structures. Since the electronic density distribution of these systems seems to be easily modified by their interaction with the molecular vibrations we anticipate that these materials may possess large piezoelectric, pyroelectric and photoacoustic coefficients. [Pg.168]

Recently, Romero and Andrews [1], and Lipinski [2] have shown that the calculated sum over states of a one-electron nonlinear optical property of a molecular system must vanish provided that the wave function employed satisfies the Hellmann-Feynman theorem. This statement applies, in particular, to the electric dipole polarizahility and, as a consequence, there must exist systems which exhibit, most prohahly in excited states, a negative polarizability. Several examples of atomic and molecular systems with negative polarizability can be found in Refs. [3-8]. In search for such systems we study the state of... [Pg.151]

Motivating the research is the need for systematic, quantitative information about how different surfaces and solvents affect the structure, orientation, and reactivity of adsorbed solutes. In particular, the question of how the anisotropy imposed by surfaces alters solvent-solute interactions from their bulk solution limit will be explored. Answers to this question promise to affect our understanding of broad classes of interfacial phenomena including electron transfer, molecular recognition, and macromolecular self assembly. By combining surface sensitive, nonlinear optical techniques with methods developed for bulk solution studies, experiments will examine how the interfacial environment experienced by a solute changes as a function of solvent properties and surface composition. [Pg.508]

The first chemical transformations carried out with Cjq were reductions. After the pronounced electrophilicity of the fullerenes was recognized, electron transfer reactions with electropositive metals, organometallic compounds, strong organic donor molecules as well as electrochemical and photochemical reductions have been used to prepare fulleride salts respectively fulleride anions. Functionalized fulleride anions and salts have been mostly prepared by reactions with carbanions or by removing the proton from hydrofullerenes. Some of these systems, either functionalized or derived from pristine Cjq, exhibit extraordinary solid-state properties such as superconductivity and molecular ferromagnetism. Fullerides are promising candidates for nonlinear optical materials and may be used for enhanced photoluminescence material. [Pg.49]

The low stability of the magnesium porphyrins has precluded most potential applications. Other metallotetrapyrroles have found industrial uses for oil desulfurization, as photoconducting agents in photocopiers, deodorants, germicides, optical computer disks, semiconductor devices, photovoltaic cells, optical and electrochemical sensing, and molecular electronic materials. A few scattered examples of the use of Mg porphyrins in nonlinear optical studies have appeared" and magnesium phthalocyanines have been used in a few studies as semiconductor or photovoltaic materials" " One of the few... [Pg.212]


See other pages where Electronic molecular nonlinear optical is mentioned: [Pg.403]    [Pg.403]    [Pg.56]    [Pg.231]    [Pg.334]    [Pg.130]    [Pg.126]    [Pg.3241]    [Pg.19]    [Pg.1957]    [Pg.311]    [Pg.321]    [Pg.277]    [Pg.5]    [Pg.147]    [Pg.64]    [Pg.574]    [Pg.105]    [Pg.126]    [Pg.621]    [Pg.447]    [Pg.111]    [Pg.563]    [Pg.2]    [Pg.11]    [Pg.372]    [Pg.271]    [Pg.332]    [Pg.17]    [Pg.56]    [Pg.263]    [Pg.299]   


SEARCH



Electron optics

Electronic Optical Nonlinearities

Electronic molecular nonlinear optical determination

Electronic molecular nonlinear optical susceptibility

Molecular nonlinear optical

Molecular nonlinearities

Molecular nonlinearity

Nonlinear optics molecular nonlinearity

Optical electron

© 2024 chempedia.info