Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron viologens

With the aim of mimicking, on a basic level, the photoinduced electron-transfer process from WOC to P680+ in the reaction center of PSII, ruthenium polypyridyl complexes were used (182-187) as photosensitizers as shown in Fig. 19. These compounds are particularly suitable since their photophysical and photochemical properties are well known. For example, the reduction potential [Rum(bpy)3]3+/-[Run(bpy)3]2+ (bpy = 2,2 -bipyridine) of 1.26 V vs NHE is sufficiently positive to affect the oxidation of phenols (tyrosine). As traps for the photochemically mobilized electron, viologens or [Co(NH3)5C1]2+ were used. [Pg.180]

The added electron is delocalized on the monovalent radical ion to which it is reduced (3). There is no general agreement on the molecular representation of the reduced stmcture. Various other viologen compounds have been mentioned (9,12). Even a polymeric electrochromic device (15) has been made, though the penalty for polymerization is a loss in device speed. Methylviologen dichloride [1910-42-5] was dissolved in hydrated... [Pg.156]

Photochromism Based on Redox Reactions. Although the exact mechanism of the reversible electron transfer is often not defined, several viologen salts (pyridinium ions) exhibit a photochromic response to uv radiation in the crystalline state or in a polar polymeric matrix, for example,... [Pg.163]

Morishima et al. [75, 76] have shown a remarkable effect of the polyelectrolyte surface potential on photoinduced ET in the laser photolysis of APh-x (8) and QPh-x (12) with viologens as electron acceptors. Decay profiles for the SPV (14) radical anion (SPV- ) generated by the photoinduced ET following a 347.1-nm laser excitation were monitored at 602 nm (Fig. 13) [75], For APh-9, the SPV- transient absorption persisted for several hundred microseconds after the laser pulse. The second-order rate constant (kb) for the back ET from SPV- to the oxidized Phen residue (Phen+) was estimated to be 8.7 x 107 M 1 s-1 for the APh-9-SPV system. For the monomer model system (AM(15)-SPV), on the other hand, kb was 2.8 x 109 M-1 s-1. This marked retardation of the back ET in the APh-9-SPV system is attributed to the electrostatic repulsion of SPV- by the electric field on the molecular surface of APh-9. The addition of NaCl decreases the electrostatic interaction. In fact, it increased the back ET rate. For example, at NaCl concentrations of 0.025 and 0.2 M, the value of kb increased to 2.5 x 108 and... [Pg.77]

Although Ru(bipy)2+ alone will not split water into hydrogen and oxygen, it has been accomplished with Ru(bipy)2+ using various catalysts or radical carriers. Perhaps the most studied system for the photoreduction of water involves using methyl viologen as the quencher, EDTA as an electron donor (decomposed in the reaction) and colloidal platinum as a redox catalyst (Figure 1.19). [Pg.26]

Two mechanisms of transmembrane electron transfer were elucidated (i) via the translocation of viologen radical across membrane and (ii) via... [Pg.40]

It proves possible to anchor catalysts of H2 evolution to the outer and inner surface of the vesicle membrane. These catalysts are finely dispersed (10-20 A in diameter) metal Pt or Pd particles formed via reduction of appropriate salts in vesicle suspension (see [15, 16] and refs, therein). Among the viologen-type electron carriers a promising one is p-bis (1,2,5-triphenyl-4-pyridil)benzene which possesses reduction potential low enough for water reduction at neutral pH. Recently, using this mediator we succeeded in H2 evolution conjugated with PET... [Pg.40]

Organic Molecules It can be seen from our earlier discussion that the presence of a transition metal ion is not always required for an electrochromic effect. Indeed, many organic molecules can yield colored products as a result of reversible reduction or oxidation. 4,4 -Bipyridinium salts are the best known example of such compounds. These compounds can be prepared, stored, and purchased in colorless dicationic form (bipm +). One electron reduction of the dication leads to the intensely colored radical cation (bipm+ ). Such radical cations exist in equilibrium with their dimers (bipm ). In the case of methyl viologen, the radical cation is blue and the dimer is red. By varying the substient group in the molecule, different colors can be obtained. [Pg.625]

Gratzel and co-workers found in their first flash experiments that the luminescence of CdS decayed with a lifetime of 0.3 ns When methyl viologen was present, the signal of the half-reduced electron acceptor, MV, was present immediately after the laser flash. With increasing concentration, the amount of MV formed... [Pg.144]

Nosaka and Fox determined the quantum yield for the reduction of methyl viologen adsorbed on colloidal CdS particles as a function of incident light intensity. Electron transfer from CdS to MV " competes with electron-hole recombination. They derived a bimolecular rate constant of 9 10 cm s for the latter process. [Pg.144]

With respect to using methyl viologen as electron relay, it might be of interest to note tlmt MV " can be oxidized by positive holes produced in illuminated colloidal semiconductors such as Ti02 Two oxidation products of MV are 1, 2 -di-hydro-l,r-dimethyl-2 -oxo-4,4 -bipyridylium chloride and 3,4-dihydro-l,r-dime-thyl-3-oxo-4,4 -bipyridylium chloride, which can readily be detected by their strong fluorescences at 516 nm and 528 nm, respectively. These products are also produced in the direct photolysis of MV " solutions and in the reaction of MV "" with OH radicals in homogeneous solution... [Pg.158]

Instead of postulating Zn," as intermediate, as it has a highly negative potential and is possibly unstable in ZnO, one may write the above mechanism with Zn e pairs. The blue-shift in the absorption upon illumination was explained by the decrease in particle size. The Hauffe mechanism was abandoned after it was recognized that an excess electron on a colloidal particle causes a blue-shift of the absorption threshold (see Fig. 19). In fact, in a more recent study it was shown that the blue-shift is also produced in the electron transfer from CH2OH radicals to colloidal ZnO particles When deaerated propanol-2 solutions of colloidal ZnO were irradiated for longer times, a black precipitate of Zn metal was formed. In the presence of 10 M methyl viologen in the alcohol solution, MV was produced with a quantum yield of 80 %... [Pg.162]

Photoinduced ET at liquid-liquid interfaces has been widely recognized as a model system for natural photosynthesis and heterogeneous photocatalysis [114-119]. One of the key aspects of photochemical reactions in these systems is that the efficiency of product separation can be enhanced by differences in solvation energy, diminishing the probability of a back electron-transfer process (see Fig. 11). For instance, Brugger and Gratzel reported that the efficiency of the photoreduction of the amphiphilic methyl viologen by Ru(bpy)3+ is effectively enhanced in the presence of cationic micelles formed by cetyltrimethylammonium chloride [120]. Flash photolysis studies indicated that while the kinetics of the photoinduced reaction,... [Pg.211]

The reduction of tetrazolium salts by NADH is greatly accelerated by electron transfer agents (ETAs) such as phenazine methosulfate (PMS 233) or its derivatives.451-454 Other classes of ETAs such as quinones.455,456 ferricinium,457 phenothiazine,458 the viologens,459 acridiniums,460 and phe-nazinium or quinoxalinium salts461 as well as the enzyme diaphorase462 have been used. [Pg.274]

Figure 16. Scheme for the photoelectrochemical reduction of C02 at p-InP with formate dehydrogenase (FDH) as the catalyst and methyl viologen (MV2+) as the electron transfer mediator.163... [Pg.382]

Later, an improved system for C02 photofixation was reported by the same authors.164 The new system consisted of 6.5 x 1(T5 M tris(2,2 -bipyridine)ruthenium(II), Ru(bpy)3, as the photosensitive electron donor, methyl viologen (MV2+, 20 mM) as the electron acceptor, and triethanolamine (TEOA, 0.6 M) as a sacrificial electron donor in a C02-saturated aqueous solution (Fig. 18). Under irradiation with a 300-W high-pressure Hg lamp with a CuS04 chemical filter (A > 320 nm), formic acid, which was detected by isotachophoresis, was produced in quantum yields of ca. 0.01%. Recently, however, Kase et al.165 have repeated this experiment using a 13C02 tracer and have claimed that the formic acid obtained was produced not by C02 reduction but rather by oxidative cleavage of TEOA. [Pg.384]

Photosensitized electron transfer cyclization of compound 173 to pyridazinooxadiazine 160 by UV irradiation in the presence of 1,4-dicyanonaphthalene (DCN) and methyl viologen (MV) was carried out. The cyclized product was obtained as a diastereomeric mixture with a 7 1 diastereomeric ratio m-stereochemistry between H-2 and H-9 was established for the major product (Equation 26) <1997TL9073>. [Pg.243]


See other pages where Electron viologens is mentioned: [Pg.228]    [Pg.230]    [Pg.228]    [Pg.230]    [Pg.68]    [Pg.198]    [Pg.164]    [Pg.112]    [Pg.116]    [Pg.244]    [Pg.266]    [Pg.40]    [Pg.408]    [Pg.409]    [Pg.268]    [Pg.67]    [Pg.118]    [Pg.120]    [Pg.129]    [Pg.134]    [Pg.142]    [Pg.151]    [Pg.152]    [Pg.156]    [Pg.158]    [Pg.603]    [Pg.613]    [Pg.59]    [Pg.220]    [Pg.35]    [Pg.383]    [Pg.84]    [Pg.134]    [Pg.347]    [Pg.496]    [Pg.260]   
See also in sourсe #XX -- [ Pg.135 , Pg.153 , Pg.429 ]




SEARCH



Electron-transfer mediator, viologen

Electron-transfer mediator, viologen amperometric glucose sensors

Electron-transfer mediator, viologen derivative containing polysiloxane

Methyl viologen electron acceptor

Photoinduced electron transfer viologen

Viologen derivative containing polysiloxane as electron-transfer

Viologen, electronic spectrum

Viologen, reduced electron transfer

Viologens

© 2024 chempedia.info