Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject electron transfer

The reason for the exponential increase in the electron transfer rate with increasing electrode potential at the ZnO/electrolyte interface must be further explored. A possible explanation is provided in a recent study on water photoelectrolysis which describes the mechanism of water oxidation to molecular oxygen as one of strong molecular interaction with nonisoenergetic electron transfer subject to irreversible thermodynamics.48 Under such conditions, the rate of electron transfer will depend on the thermodynamic force in the semiconductor/electrolyte interface to... [Pg.512]

Calculations within tire framework of a reaction coordinate degrees of freedom coupled to a batli of oscillators (solvent) suggest tliat coherent oscillations in the electronic-state populations of an electron-transfer reaction in a polar solvent can be induced by subjecting tire system to a sequence of monocliromatic laser pulses on tire picosecond time scale. The ability to tailor electron transfer by such light fields is an ongoing area of interest [511 (figure C3.2.14). [Pg.2987]

The intense blue color of Pmssian Blue is attributed to electron transfer between the [Fe(CN)3] and Fe(Ill) ions. A related pigment called Berlin Green is obtained by oxidation of Pmssian Blue. It is thought that the intense color of this other compound results only if oxidation of the [Fe(CN)3] units is incomplete and some remain as hexakiscyanoferrate(4—). The compound in which only h on(Ill) is present, Fe[Fe(CN)3] [14433-93-3], is brown and is subject to autoreduction processes. [Pg.435]

Examples include luminescence from anthracene crystals subjected to alternating electric current (159), luminescence from electron recombination with the carbazole free radical produced by photolysis of potassium carba2ole in a fro2en glass matrix (160), reactions of free radicals with solvated electrons (155), and reduction of mtheiiium(III)tris(bipyridyl) with the hydrated electron (161). Other examples include the oxidation of aromatic radical anions with such oxidants as chlorine or ben2oyl peroxide (162,163), and the reduction of 9,10-dichloro-9,10-diphenyl-9,10-dihydroanthracene with the 9,10-diphenylanthracene radical anion (162,164). Many other examples of electron-transfer chemiluminescence have been reported (156,165). [Pg.270]

H2 or O2 from water in the presence of a sacrificial reductant or oxidant employ a mthenium complex, typically [Ru(bipy)2], as the photon absorber (96,97). A series of mixed binuclear mthenium complexes having a variety of bridging ligands have been the subject of numerous studies into the nature of bimolecular electron-transfer reactions and have been extensively reviewed (99—102). The first example of this system, reported in 1969 (103), is the Creutz-Taube complex [35599-57-6] [Ru2(pyz)(NH3. [Pg.178]

The early history of redox initiation has been described by Bacon.23 The subject has also been reviewed by Misra and Bajpai,207 Bamford298 and Sarac.2,0 The mechanism of redox initiation is usually bimolecular and involves a single electron transfer as the essential feature of the mechanism that distinguishes it from other initiation processes. Redox initiation systems are in common use when initiation is required at or below ambient temperature and drey are frequently used for initiation of emulsion polymerization. [Pg.104]

Cumulative Subject Index Single electron transfer reactions... [Pg.223]

Novi and coworkers124 have shown that the reaction of 2,3-bis(phenylsulfonyl)-l,4-dimethylbenzene with sodium benzenethiolate in dimethyl sulfoxide yields a mixture of substitution, cyclization and reduction products when subjected at room temperature to photostimulation by a sunlamp. These authors proposed a double chain mechanism (Scheme 17) to explain the observed products. This mechanism is supported by a set of carefully designed experiments125. The addition of PhSH, a good hydrogen atom donor, increases the percent of reduction products. When the substitution process can effectively compete with the two other processes, the increase in the relative yield of substitution (e.g., with five molar equivalents of benzenethiolate) parallels the decrease in those of both cyclization and reduction products. This suggests a common intermediate leading to the three different products. This intermediate could either be the radical anion formed by electron transfer to 2,3-bis(phenylsulfonyl)-l,4-dimethylbenzene or the a radical formed... [Pg.1072]

Lu, C. Y. Lui, Y.Y. (2002). Electron transfer oxidation of tryptophan and tyrosine by triplet states and oxidized radicals of flavin sensitizers a laser flash photolysis study. Biochimica et Biophysica Acta (BBA) - General Subjects, Vol. 1571, No.l, (May 2002), pp. 71-76, ISSN 0304-4165... [Pg.22]

The mechanism of this electron transfer has been the subject of many studies. Many workers support the involvement of the superoxide radical ion.463Jl6S However, a recent study469 based on EPR470 and electrochemi-... [Pg.274]

A variety of transition metal complexes including organometallics was subjected to an ac electrolysis in a simple undivided electrochemical cell, containing only two current-carrying platinum electrodes. The compounds (A) are reduced and oxidized at the same electrode. If the excitation energy of these compounds is smaller than the potential difference of the reduced (A ) and oxidized (A ) forms, back electron transfer may regenerate the complexes in an electronically excited state (A+ + A A + A). Under favorable conditions an electrochemiluminescence (eel) is then observed (A A + hv). A weak eel appeared upon electrolysis o t]jie following complexes Ir(III)-(2-phenylpyridine-C, N ) [Cu(I)(pyridine)i],... [Pg.159]

A solid-liquid interface will have three aspects to its structure the atomic 1.1 structure of the solid electrode, the structure of any adsorbed layer and the Structure structure of the liquid layer above the electrode. All three of these are of fundamental importance in the understanding of the electron transfer processes at the core of electrochemistry and we must consider all three if we are to arrive at a fundamental understanding of the subject. [Pg.7]

The electron-transfer paradigm in Scheme 1 (equation 8) is subject to direct experimental verification. Thus, the deliberate photoactivation of the preequilibrium EDA complex via irradiation of the charge-transfer absorption band (/ vCT) generates the ion-radical pair, in accord with Mulliken theory (equation 98). [Pg.296]

The first question is whether the redox systems can be subjected to successive electron-transfer reactions in extended redox sequences. What one needs to know thereby are the number of charges that can be transferred and what is the Coulombic repulsion arising between the charged subunits. The experimental methods that have to be applied are obvious. Cyclic... [Pg.10]

The conclusion from the above examples is that under appropriate experimental conditions these systems can be subjected to successive electron-transfer reactions forming highly charged derivatives with intact molecular frameworks. [Pg.14]

Taube, H. (1970). Electron Transfer Reactions of Complex Ions in Solution. Academic Press, New York. One of the most significant works on the subject of electron transfer reactions. [Pg.736]


See other pages where Subject electron transfer is mentioned: [Pg.31]    [Pg.31]    [Pg.31]    [Pg.31]    [Pg.604]    [Pg.2409]    [Pg.2971]    [Pg.2972]    [Pg.2990]    [Pg.3032]    [Pg.3]    [Pg.619]    [Pg.208]    [Pg.301]    [Pg.34]    [Pg.769]    [Pg.98]    [Pg.206]    [Pg.583]    [Pg.88]    [Pg.185]    [Pg.45]    [Pg.398]    [Pg.854]    [Pg.181]    [Pg.444]    [Pg.224]    [Pg.231]    [Pg.120]    [Pg.347]    [Pg.723]    [Pg.562]    [Pg.150]    [Pg.1]    [Pg.27]    [Pg.32]   
See also in sourсe #XX -- [ Pg.397 ]




SEARCH



Subject electronics

© 2024 chempedia.info