Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron transfer reaction, radicals with

The simplest electrodimerization mechanism occurs when the species formed as the result of a first electron transfer reaction reacts with itself to form a dimer (Scheme 2.7). This mechanism is usually termed radical-radical dimerization (RRD) because the most extensive studies where it occurs have dealt with the dimerization of anion and cation radicals formed upon a first electron transfer step as opposed to the case of radical-substrate dimerizations, which will be discussed subsequently. It is a bimolecular version of the EC mechanism. The bimolecular character of the follow-up reaction leads to nonlinear algebra and thus complicates slightly the analysis and numerical computation of the system. The main features of the cyclic voltammetric responses remain qualitatively similar, however. Unlike the EC case, however, the dimensionless parameter,... [Pg.103]

Although a previous chapter in this volume provides a broader perspective on the reactivity of radical cations, in this section we will examine intramolecular electron-transfer reactions coupled with or followed by cleavage of a bond in odd electron species such as radical cations, radical zwitterions and radical anions. In particular, this paragraph will be divided in oxidative and reductive bond-cleavage processes. Because this field is however too large to be covered extensively here, the discussion will be limited to selected examples—for oxidative cleavages, side-chain fragmentation reactions of alkylaromatic radical cations and decarboxylation reactions of radical zwitterions derived from benzoic and arylalkanoic acids, and for reductive... [Pg.1184]

Transition metal complexes functioning as redox catalysts are perhaps the most important components of an ATRP system. (It is, however, possible that some catalytic systems reported for ATRP may lead not only to formation of free radical polymer chains but also to ionic and/or coordination polymerization.) As mentioned previously, the transition metal center of the catalyst should undergo an electron transfer reaction coupled with halogen abstraction and accompanied by expansion of the coordination sphere. In addition, to induce a controlled polymerization process, the oxidized transition metal should rapidly deactivate the propagating polymer chains to form dormant species (Fig. 11.16). The ideal catalyst for ATRP should be highly selective for atom transfer, should not participate in other reactions, and should deactivate extremely fast with diffusion-controlled rate constants. Finther, it should have easily tunable activation rate constants to meet sped c requirements for ATRP monomers. For example, very active catalysts with equilibrium constants K > 10 for styrenes and acrylates are not suitable for methacrylates. [Pg.600]

The radical cation of 1 (T ) is produced by a photo-induced electron transfer reaction with an excited electron acceptor, chloranil. The major product observed in the CIDNP spectrum is the regenerated electron donor, 1. The parameters for Kaptein s net effect rule in this case are that the RP is from a triplet precursor (p. is +), the recombination product is that which is under consideration (e is +) and Ag is negative. This leaves the sign of the hyperfine coupling constant as the only unknown in the expression for the polarization phase. Roth et aJ [10] used the phase and intensity of each signal to detemiine the relative signs and magnitudes of the... [Pg.1601]

The reaction of perfluoroalkyl iodides with alkenes affords the perfluoro-alkylated alkyl iodides 931. Q.a-Difluoro-functionalized phosphonates are prepared by the addition of the iododifluoromethylphosphonate (932) at room temperature[778], A one-electron transfer-initiated radical mechanism has been proposed for the addition reaction. Addition to alkynes affords 1-perfluoro-alkyl-2-iodoalkenes (933)[779-781]. The fluorine-containing oxirane 934 is obtained by the reaction of allyl aicohol[782]. Under a CO atmosphere, the carbocarbonylation of the alkenol 935 and the alkynol 937 takes place with perfluoroalkyl iodides to give the fluorine-containing lactones 936 and 938[783]. [Pg.264]

Photopolymerization. In many cases polymerization is initiated by ittadiation of a sensitizer with ultraviolet or visible light. The excited state of the sensitizer may dissociate directiy to form active free radicals, or it may first undergo a bimoleculat electron-transfer reaction, the products of which initiate polymerization (14). TriphenylaLkylborate salts of polymethines such as (23) ate photoinitiators of free-radical polymerization. The sensitivity of these salts throughout the entire visible spectral region is the result of an intra-ion pair electron-transfer reaction (101). [Pg.496]

One-electron oxidation of carboxylate ions generates acyloxy radicals, which undergo decarboxylation. Such electron-transfer reactions can be effected by strong one-electron oxidants, such as Mn(HI), Ag(II), Ce(IV), and Pb(IV) These metal ions are also capable of oxidizing the radical intermediate, so the products are those expected from carbocations. The oxidative decarboxylation by Pb(IV) in the presence of halide salts leads to alkyl halides. For example, oxidation of pentanoic acid with lead tetraacetate in the presence of lithium chloride gives 1-chlorobutane in 71% yield ... [Pg.726]

Quinones may react with carbon-centered radicals by addition at oxygen or carbon, or by electron transfer (Scheme 5.]6).l74, fi2 195 201 202 The preferred reaction pathway depends both on the attacking radical and the particular quinone (halogenated quinones react preferentially by electron transfer). The radical formed may then scavenge another radical. There is also evidence that certain quinones e.g. chloranil, benzoquinone (38)] may copolymerize under some conditions. ... [Pg.271]

Kattenberg and coworkers54 studied the chlorination of a-lithiated sulfones with hexachloroethane. These compounds may react as nucleophiles in a nucleophilic substitution on halogen (path a, Scheme 5) or in an electron transfer reaction (path b, Scheme 5) leading to the radical anions. The absence of proof for radical intermediates (in particular, no sulfone dimers detected) is interpreted by these authors in favour of a SN substitution on X. [Pg.1058]

The reaction of eq. 16.9 will regenerate the antioxidant Arj-OH at the expense of the antioxidant At2-OH. Despite the fact that such regeneration reactions are not simple electron transfer reactions, the rate of reactions like that of eq. 16.9 has been correlated with the E values for the respective Ar-0. Thermodynamic and kinetic effects have not been clearly separated for such hierarchies, but for a number of flavonoids the following pecking order was established in dimethyl formamid (DMF) by a combination of electrolysis for generating the a-tocopherol and the flavonoid phenoxyl radicals and electron spin resonance (ESR) spectroscopy for detection of these radicals (Jorgensen et al, 1999) ... [Pg.324]

Colloids of a-FejOj are made by hydrolysis of FeClj and subsequent dialysis of the sol. Polyvinyl alcohol is often used as a stabilizing agent. The band gap in Fe203 is 2.2 eV. In some of the studies on colloidal Fc203 free radicals were generated by ionizing radiation and electron transfer reactions with the colloidal particles investigated. Buxton et al. observed a cathodic dissolution of a-FCjOj in acidic... [Pg.159]

Reduction of Ketones and Enones. Although the method has been supplanted for synthetic purposes by hydride donors, the reduction of ketones to alcohols in ammonia or alcohols provides mechanistic insight into dissolving-metal reductions. The outcome of the reaction of ketones with metal reductants is determined by the fate of the initial ketyl radical formed by a single-electron transfer. The radical intermediate, depending on its structure and the reaction medium, may be protonated, disproportionate, or dimerize.209 In hydroxylic solvents such as liquid ammonia or in the presence of an alcohol, the protonation process dominates over dimerization. Net reduction can also occur by a disproportionation process. As is discussed in Section 5.6.3, dimerization can become the dominant process under conditions in which protonation does not occur rapidly. [Pg.435]

Aromatic diazo compounds can be reduced in water via a radical process (Scheme 11.5).108 The reduction mechanism of arenediazo-nium salts by hydroquinone was studied in detail.109 Arenediazonium tetrafluoroborate salts undergo facile electron-transfer reactions with hydroquinone in aqueous phosphate-buffered solution containing the hydrogen donor solvent acetonitrile. Reaction rates are first order in a... [Pg.362]

Fig. 1 Schematic mechanism for the long-distance oxidation of DNA. Irradiation of the anthraquinone (AQ) and intersystem crossing (ISC) forms the triplet excited state (AQ 3), which is the species that accepts an electron from a DNA base (B) and leads to products. Electron transfer to the singlet excited state of the anthraquinone (AQ 1) leads only to back electron transfer. The anthraquinone radical anion (AQ ) formed in the electron transfer reaction is consumed by reaction with oxygen, which is reduced to superoxide. This process leaves a base radical cation (B+-, a hole ) in the DNA with no partner for annihilation, which provides time for it to hop through the DNA until it is trapped by water (usually at a GG step) to form a product, 7,8-dihydro-8-oxoguanine (8-OxoG)... Fig. 1 Schematic mechanism for the long-distance oxidation of DNA. Irradiation of the anthraquinone (AQ) and intersystem crossing (ISC) forms the triplet excited state (AQ 3), which is the species that accepts an electron from a DNA base (B) and leads to products. Electron transfer to the singlet excited state of the anthraquinone (AQ 1) leads only to back electron transfer. The anthraquinone radical anion (AQ ) formed in the electron transfer reaction is consumed by reaction with oxygen, which is reduced to superoxide. This process leaves a base radical cation (B+-, a hole ) in the DNA with no partner for annihilation, which provides time for it to hop through the DNA until it is trapped by water (usually at a GG step) to form a product, 7,8-dihydro-8-oxoguanine (8-OxoG)...
Outer-sphere electron transfer reactions involving the [Co(NH3)6]3+/2+ couple have been thoroughly studied. A corrected [Co(NH3)6]3+/2+ self-exchange electron transfer rate (8 x 10-6M-1s-1 for the triflate salt) has also been reported,588 which is considerably faster than an earlier report. A variety of [Co(NH3)g]3+/2+ electron transfer cross reactions with simple coordination compounds,589 organic radicals,590,591 metalloproteins,592 and positronium particles (electron/ positron pairs)593 as redox partners have been reported. [Pg.58]

EPR techniques were used to show (Polyakov et al. 2001a) that one-electron transfer reactions occur between carotenoids and the quinones, 2,3-dichloro-5,6-dicyano-l,4-benzoquinone (DDQ), and tetrachlorobenzoquinone (CA). A charge-transfer complex (CTC) is formed with a -values of 2.0066 and exists in equilibrium with an ion-radical pair (Car Q ). Increasing the temperature from 77 K gave rise to a new five-line signal with g=2.0052 and hyperfine couplings of 0.6 G due to the DDQ radical anions. At room temperature a stable radical with y=2.0049 was detected, its... [Pg.164]

From Table 14.6 it can be seen that, with the exception of astaxanthin (ASTA), the rate constants for the electron transfer reactions decrease for each carotenoid in the order 9-phenanthryl peroxyl > 1-naphthyl peroxyl > 2-naphthyl peroxyl. This order of reactivity should be related to the reduction potentials of the radicals, with 9-phenanthryl peroxyl having the highest reduction potential. The same order of reactivity for these three arylperoxyl radicals reacting with Trolox was shown by Neta and coworkers (Alfassi et al. 1995). The reactivities of all the carotenoids studied are similar... [Pg.294]

The ability of a nitro group in the substrate to bring about electron-transfer free radical chain nucleophilic substitution (SrnI) at a saturated carbon atom is well documented.39 Such electron transfer reactions are one of the characteristic features of nitro compounds. Komblum and Russell have established the SrnI reaction independently the details of the early history have been well reviewed by them.39 The reaction of p-nitrobenzyl chloride with a salt of nitroalkane is in sharp contrast to the general behavior of the alkylation of the carbanions derived from nitroalkanes here, carbon alkylation is predominant. The carbon alkylation process proceeds via a chain reaction involving anion radicals and free radicals, as shown in Eq. 5.24 and Scheme... [Pg.133]

Thus, if the lifetime of a spin state is 81, the energy level is broadened by an amount H/81, with consequences for ESR line widths. Ward and Weissman1 added some unreduced naphthalene to a solution of the radical anion, and, from the observed broadening, computed 81, and from 8/ the rate constant for the electron transfer reaction ... [Pg.92]

The critical role of the ion-radical pair in the cycloaddition reactions in equation (75) is demonstrated by a careful measurement of the quantum yields as a function of the dienophile concentration and by a study of the effect of solvent and salt on the dynamics of the ion pair ANT+ , MA-. 212 However, in the reported cases, back electron transfer effectively competes with the coupling within the ion-radical pair and thus limits the quantum yields for the formation of the Diels-Alder adduct.212... [Pg.270]

The importance of radical ions and electron-transfer reactions has been pointed out in the preceding sections (see also p. 128). Thus, in linear hydrazide chemiluminescence (p. 103) or acridine aldehyde or ketone chemiluminescence, the excitation steps consist in an electron transfer from a donor of appropriate reduction potential to an acceptor in such a way that the electron first occupies the lowest antibonding orbital, as in the reaction of 9-anthranoyl peroxide 96 with naphthalene radical anion 97 142> ... [Pg.119]

Alkyl radicals share many of the desirable properties of or-ganometals described above, insofar as electron transfer reactions are concerned. Thus the steric properties of alkyl radicals with a- and (3-branches follow the trends in Figure 2. Moreover, the direct parallel in their donor properties is shown in Figure 3 by... [Pg.115]

Energetic electron transfer reactions between electrochemically generated, shortlived, radical cations and anions of polyaromatic hydrocarbons are often accompanied by the emission of light, due to the formation of excited species. Such ECL reactions are carried out in organic solvents such as dimethylformamide or acetonitrile, with typically a tetrabutylammonium salt as a supporting electrolyte. The general mechanism proposed for these reactions is as follows. [Pg.215]

Cyclic chain termination with aromatic amines also occurs in the oxidation of tertiary aliphatic amines (see Table 16.1). To explain this fact, a mechanism of the conversion of the aminyl radical into AmH involving the (3-C—H bonds was suggested [30]. However, its realization is hampered because this reaction due to high triplet repulsion should have high activation energy and low rate constant. Since tertiary amines have low ionization potentials and readily participate in electron transfer reactions, the cyclic mechanism in systems of this type is realized apparently as a sequence of such reactions, similar to that occurring in the systems containing transition metal complexes (see below). [Pg.574]


See other pages where Electron transfer reaction, radicals with is mentioned: [Pg.220]    [Pg.120]    [Pg.909]    [Pg.909]    [Pg.126]    [Pg.950]    [Pg.215]    [Pg.50]    [Pg.115]    [Pg.231]    [Pg.44]    [Pg.582]    [Pg.98]    [Pg.410]    [Pg.653]    [Pg.116]    [Pg.288]    [Pg.182]    [Pg.92]    [Pg.186]    [Pg.140]    [Pg.122]    [Pg.178]    [Pg.344]    [Pg.384]   


SEARCH



Electron radicals

Electron transfer reaction, radicals with diphenyliodonium salts

Electron-Transfer Reactions with Participation of Ion-Radical Aggregates

Electron-transfer reactions radicals

Radical electron transfer

Radical transfer

Radical transfer reactions

Reaction with radicals

Reactions with electrons

Transfer with Reaction

© 2024 chempedia.info