Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

31-Electron tetroxide

Unlike nitrogen monoxide, nitrogen dioxide has properties more typical of an odd electron molecule. It is a coloured (brown), reactive gas which dimerises to the diamagnetic colourless gas dinitrogen tetroxide, N2O4. in which the odd electron is paired. The structure of dinitrogen tetroxide can be represented as a resonance hybrid of ... [Pg.231]

Outline the laboratory preparation of a sample of dinitrogen tetroxide. Describe and explain what happens when it is heated from 290 K to 900 K. Suggest electronic structures for dinitrogen tetroxide and the other nitrogen-containing molecules formed from it on heating to 900 K. Point out any unusual structural features. [Pg.255]

Fig. 1. Transmission electron micrograph of ABS produced by an emulsion process. Staining of the mbber bonds with osmium tetroxide provides contrast... Fig. 1. Transmission electron micrograph of ABS produced by an emulsion process. Staining of the mbber bonds with osmium tetroxide provides contrast...
Ruthenium nowadays finds many uses in the electronics industry, particularly for making resistor tracks. It is used as an ingredient in various catalysts and, importantly, in electrode materials, e.g. Ru02-coated titanium elements in the chloralkali industry. Osmium tetroxide is a very useful organic oxidant and, classically, is used as a tissue stain. Both elements are employed in making certain platinum alloys. [Pg.417]

Iron, trinitrato(dinitrogen tetroxide)-structure, 1,28 Iron, tris(acetylacetone)-electron recording system, 6,127 structure, 1, 65 Iron, tris(bipyridyl)-... [Pg.147]

ABA type poly(hydroxyethyl methacrylate) (HEMA) and PDMS copolymers were synthesized by the coupling reactions of preformed a,co-isocyanate terminated PDMS oligomers and amine-terminated HEMA macromonomers312). Polymerization reactions were conducted in DMF solution at 0 °C. Products were purified by precipitation in diethyl ether to remove unreacted PDMS oligomers. After dissolving in DMF/toluene mixture, copolymers were reprecipitated in methanol/water mixture to remove unreacted HEMA oligomers. Microphase separated structures were observed under transmission electron microscope, using osmium tetroxide stained thin copolymer films. [Pg.45]

The osmium-catalyzed dihydroxylation reaction, that is, the addition of osmium tetr-oxide to alkenes producing a vicinal diol, is one of the most selective and reliable of organic transformations. Work by Sharpless, Fokin, and coworkers has revealed that electron-deficient alkenes can be converted to the corresponding diols much more efficiently when the pH of the reaction medium is maintained on the acidic side [199]. One of the most useful additives in this context has proved to be citric acid (2 equivalents), which, in combination with 4-methylmorpholine N-oxide (NMO) as a reoxidant for osmium(VI) and potassium osmate [K20s02(0H)4] (0.2 mol%) as a stable, non-volatile substitute for osmium tetroxide, allows the conversion of many olefinic substrates to their corresponding diols at ambient temperatures. In specific cases, such as with extremely electron-deficient alkenes (Scheme 6.96), the reaction has to be carried out under microwave irradiation at 120 °C, to produce in the illustrated case an 81% isolated yield of the pure diol [199]. [Pg.173]

Stain embedded sections lightly in uranyl acetate and lead citrate (optional). Frozen sections may be stained with osmium tetroxide vapor. Staining with OSO4 or uranyl acetate may be conducted without obscuring the gold particles. Wash and examine under the electron microscope. [Pg.105]

Carbocations as electron acceptors in aromatic EDA complexes 192 Bis(arene)iron(II) complexes with arene and ferrocene donors 198 Carbonylmetallate anions as electron donors in charge-transfer salts 204 Aromatic EDA complexes with osmium tetroxide 219... [Pg.185]

Among oxo-metals, osmium tetroxide is a particularly intriguing oxidant since it is known to oxidize various types of alkenes rapidly, but it nonetheless eschews the electron-rich aromatic hydrocarbons like benzene and naphthalene (Criegee et al., 1942 Schroder, 1980). Such selectivities do not obviously derive from differences in the donor properties of the hydrocarbons since the oxidation (ionization) potentials of arenes are actually less than those of alkenes. The similarity in the electronic interactions of arenes and alkenes towards osmium tetroxide relates to the series of electron donor-acceptor (EDA) complexes formed with both types of hydrocarbons (26). Common to both arenes and alkenes is the immediate appearance of similar colours that are diagnostic of charge-transfer absorp-... [Pg.219]

The fluorescent labels reported for investigation of intracellular uptake and distribution by CLSM comprise Nile red [13], Texas Red, and 6-coumarin [14]. Not only for fluorescence microscopy but also for transmission electron microscopy (TEM), the loading of markers proved to be useful. Osmium tetroxid as an electron dense marker and bovine serum albumin (BSA) as a model protein were entrapped in PLGA-nanoparticles to elucidate their uptake and intracellular distribution in human vascular smooth muscle cells [15]. [Pg.645]

Flowever, some associated materials might be perceived as toxic. For example, complexes of osmium find frequent use as electron mediators, because of their rich chemistry, stability, and redox activity. Osmium metal and most compounds are considered nontoxic, but the neat tetroxide of osmium is a strong oxidizer and is considered highly toxic in the U.S. and very toxic by the European Union. On the other hand, the aqueous solution, osmic acid, has been injected at 1% concentration in several European clinical trials, starting in the 1970s, for treatment of arthritis and hemophilia. - No toxic effects were observed. Thus, osmium toxicity might be a question not of in vivo chemistry, but of manufacture, where a concentrated form of the oxide might need to be handled. ... [Pg.631]


See other pages where 31-Electron tetroxide is mentioned: [Pg.81]    [Pg.81]    [Pg.128]    [Pg.437]    [Pg.179]    [Pg.417]    [Pg.563]    [Pg.676]    [Pg.16]    [Pg.121]    [Pg.194]    [Pg.640]    [Pg.1569]    [Pg.150]    [Pg.149]    [Pg.105]    [Pg.113]    [Pg.116]    [Pg.315]    [Pg.237]    [Pg.53]    [Pg.231]    [Pg.88]    [Pg.31]    [Pg.235]    [Pg.265]    [Pg.306]    [Pg.313]    [Pg.276]    [Pg.40]    [Pg.704]    [Pg.149]    [Pg.311]    [Pg.403]    [Pg.48]   
See also in sourсe #XX -- [ Pg.81 ]




SEARCH



Tetroxides

© 2024 chempedia.info