Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron signal intensity

Experimentally, this phenomenon is difficult to observe (Ihrs sr however again electronic resonance enliancement is seen to greatly increase the signal intensity [14 ]. [Pg.1214]

ELDOR is tlie acronym for electron-electron double resonance. In an ELDOR experiment [28] one observes a rednction in the EPR signal intensity of one hyperfme transition that results from the saturation of another EPR transition within the spin system. ELDOR measurements are still relatively rare bnt the experiment is fimily established in the EPR repertoire. [Pg.1571]

Figure 2.36 A shows a typical low-loss spectrum taken from boron nitride (BN). The structure of BN is similar to that of graphite, i. e. sp -hybridized carbon. For this reason the low-loss features are quite similar and comprise a distinct plasmon peak at approximately 27 eV attributed to collective excitations of both n and a electrons, whereas the small peak at 7 eV comes from n electrons only. Besides the original spectrum the zero-loss peak and the low-loss part derived by deconvolution are also drawn. By calculating the ratio of the signal intensities hot and Iq a relative specimen thickness t/2 pi of approximately unity was found. Owing to this specimen thickness there is slight indication of a second plasmon. Figure 2.36 A shows a typical low-loss spectrum taken from boron nitride (BN). The structure of BN is similar to that of graphite, i. e. sp -hybridized carbon. For this reason the low-loss features are quite similar and comprise a distinct plasmon peak at approximately 27 eV attributed to collective excitations of both n and a electrons, whereas the small peak at 7 eV comes from n electrons only. Besides the original spectrum the zero-loss peak and the low-loss part derived by deconvolution are also drawn. By calculating the ratio of the signal intensities hot and Iq a relative specimen thickness t/2 pi of approximately unity was found. Owing to this specimen thickness there is slight indication of a second plasmon.
K Fe(CN)6 oxidation Compound F is stoichiometrically inactivated by oxidation with K.3Fe(CN)6 (Shimomura and Johnson, 1967) thus, it is possible to estimate the molecular extinction coefficient (e) of the 388-390 nm absorption peak by titrating F with K.3Fe(CN)6- The e value obtained by the titration in 50% ethanol was 15,400 (assuming the reaction to be one-electron oxidation) or 30,800 (assuming two-electron oxidation). Two other methods of lesser precision were used to determine the true s value 1) the dry weight of the ethyl acetate extract of an acidified solution of F gave an e value of 14,100 2) the comparison of NMR signal intensities gave a value of 11,400 2,000 in water (H. Nakamura, Y. Oba, and A. Murai, 1995, personal... [Pg.75]

A scintillation counter makes use of the fact that phosphors—phosphorescent substances such as sodium iodide and zinc sulfide (see Section 15.14)—give a flash of light—a scintillation—when exposed to radiation. The counter also contains a photomultiplier tube, which converts light into an electrical signal. The intensity of the radiation is determined from the strength of the electronic signal. [Pg.830]

The other signal shown in Fig. 10a was observed after adsorption of TiCU under electron bombardment and subsequent treatment with electrons on MgCl2 substrates, which show paramagnetic defect states. In this case the signal intensity is increased by more than an order of magnitude as compared to the former case. In addition, the signal is shifted up-field, now located at g = 1.93, with a peak-to-peak width of 50-90 G, depending on the preparation. [Pg.136]

The total contribution to the Auger electron signal is then dependent upon the attenuation length (kM) in the matrix before being inelastically scattered, and upon the transmission efficiency of the electron spectrometer as well as the efficiency of the electron detector. Calculated intensities of Auger peaks rarely give an accuracy better than 50%, and it is more reliable to adopt an approach which utilises standards, preferably obtained in the same instrument. [Pg.175]

Background copper levels in seawater have been measured by electron spin resonance techniques [300]. The copper was extracted from the seawater into a solution of 8-hydroxyquinoline in ethyl propionate (3 ml extractant per 100 ml seawater), and the organic phase (1 ml) was introduced into the electron spin resonance tube for analysis. Signal-to-noise ratio was very good for the four-line spectrum of the sample and of the sample spiked with 4 and 8ng Cu2+. The graph of signal intensity versus concentration of copper was rectilinear over the range 2-10 xg/l of seawater, and the coefficient of variation was 3%. [Pg.174]

In bulk samples, X-ray yields need to be adjusted by the so-called "ZAF" correction. Z stands for the element number (heavier elements reduce the electron beam intensity more than lighter elements, because they are more efficient back-scatterers), A for absorption (different elements have different cross sections for X-ray absorption), and F for secondary fluorescence (the effect described above). Corrections are much less important when the sample is a film with a thickness of 1 pm or less, because secondary effects are largely reduced. The detection limit is set by the accuracy with which a signal can be distinguished from the bremsstrahlung background. In practice, this corresponds to about 100 ppm for elements heavier than Mg. [Pg.191]

As with the UV absorption detector, the sample compartment consists of a special cell for measuring a flowing, rather than static, solution. The fluorescence detector thus individually measures the fluorescence intensities of the mixture components as they elute from the column (see Figure 13.10). The electronic signal generated at the phototube is recorded on the chromatogram. [Pg.380]


See other pages where Electron signal intensity is mentioned: [Pg.46]    [Pg.46]    [Pg.1570]    [Pg.1570]    [Pg.1641]    [Pg.166]    [Pg.565]    [Pg.590]    [Pg.55]    [Pg.56]    [Pg.65]    [Pg.294]    [Pg.411]    [Pg.791]    [Pg.912]    [Pg.72]    [Pg.124]    [Pg.912]    [Pg.235]    [Pg.209]    [Pg.441]    [Pg.136]    [Pg.25]    [Pg.338]    [Pg.352]    [Pg.118]    [Pg.418]    [Pg.514]    [Pg.217]    [Pg.347]    [Pg.20]    [Pg.152]    [Pg.267]    [Pg.364]    [Pg.20]    [Pg.32]    [Pg.33]    [Pg.289]    [Pg.535]    [Pg.183]    [Pg.350]    [Pg.76]   
See also in sourсe #XX -- [ Pg.276 ]

See also in sourсe #XX -- [ Pg.276 ]




SEARCH



Electron intensity

Intensive signals

Signal intensity

© 2024 chempedia.info