Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron resonance spectroscopy components

Chapman A, Cammack R, Linstead DJ, Lloyd D. 1986. Respiration of Trichomonas vaginalis components detected by electron paramagnetic resonance spectroscopy. Eur J Biochem 156 193-8. [Pg.125]

Prof. Fleming, the expressions you are using for the nonlinear response function may be derived using the second-order cumulant expansion and do not require the use of the instantaneous normal-mode model. The relevant information (the spectral density) is related to the two-time correlation function of the electronic gap (for resonant spectroscopy) and of the electronic polarizability (for off-resonant spectroscopy). You may choose to interpret the Fourier components of the spectral density as instantaneous oscillators, but this is not necessary. The instantaneous normal mode provides a physical picture whose validity needs to be verified. Does it give new predictions beyond the second-order cumulant approach The main difficulty with this model is that the modes only exist for a time scale comparable to their frequencies. In glasses, they live much longer and the picture may be more justified than in liquids. [Pg.182]

Some attention must be paid to the electrode dimensions (see Fig. 9.9). The working electrode s lower edge should be close to the bottom of the cell plates to minimize iR-drop problems. The width of the working electrode in contact with the thin layer of solution should be small to minimize edge diffusion. As noted earlier, a vertical orientation is not desirable however, it is convenient and compatible with the horizontal optical path of virtually all commercial spectrophotometers. Recommended sources of cell components (including minigrids) are listed in Table 9.1. Thin-layer cells for chromatographic detection and electron spin resonance spectroscopy are discussed in Chapters 27 and 29, and their application in optical studies is described in Chapter 3. [Pg.283]

Wardman P, Dennis MF, Everett SA, Patel KB, Stratford MRL, Tracy M (2003) Radicals from one-electron reduction of nitro compounds, aromatic N-oxides and quinones the kinetic basis for hypoxia-selective, bioreductive drugs. Biochem Soc Symp 61 171-194 Warman JM, de Haas MP, Hummel A, van Lith D, VerberneJB, Loman H (1980) A pulse radiolysis conductivity study of frozen aqueous solutions of DNA. Int J Radiat Biol 38 459-459 Warman JM, de Haas MP, Rupprecht A (1996) DNA a molecular wire Chem Phys Lett 249 319-322 Warters RL, Lyons BW (1992) Variation in radiation-induced formation of DNA double-strand breaks as a function of chromatin structure. Radiat Res 130 309-318 Warters RL, Hofer KG, Harris CR, Smith JM (1977) Radionuclide toxicity in cultured mammalian cells Elucidation of the primary site of radiation damage. Curr Top Radiat Res Q 12 389-407 Weiland B, Huttermann J (1998) Free radicals from X-irradiated, dry and hydrated lyophilized DNA as studies by electron spin resonance spectroscopy analysis of spectral components between 77 K and room temperature. Int J Radiat Biol 74 341-358 Weinfeld M, Soderlind K-JM (1991) 32P-Postlabeling detection of radiation-induced DNA-damage identification and estimation of thymine glycols and phosphoglycolate termini. Biochemistry 30 1091-1097... [Pg.480]

The interaction of the unpaired electron on the paramagnetic metal ion with that of the nuclear spin is analogous to the nuclear-nuclear spin complex commonly observed in nuclear mimetic resonance spectroscopy. Thus, the electron-spin relaxation (Te) affects the nuclear-spin relaxation-rates (T, and T2). Eqs. 3 and 4, describing the contribution to the nuclear relaxation rate from the component spin on the paramagnetic species were derived by Solomon and Bloembergen ... [Pg.133]

Abstract Stereocomplexes have been formed by mixing the two isotactic poly(a-methyl-a-cthyl-p-propriolactones) (PMEPL) of opposite chirality. This leads to an insoluble complex exhibiting a melting transition which is 40 C above that of the initial isotactic components. Structural differences between these samples have been determined by nuclear magnetic resonance spectroscopy and electron diffraction. It was found by NMR that the stereocomplex crystallizes in a 2 helical conformation whereas the corresponding isotactic chains exhibit a helical or extended chain conformation depending upon the method of sample preparation. Electron diffraction confirms these measurements with the determination of a,b and c dimensions of the orthorombic unit cells. [Pg.131]

An overview of die free radicals and reactions thereof is presented. Free radicals are atoms or groups having an unpaired electron and hence are paramagnetic. Electron paramagnetic resonance spectroscopy (EPR) and trapping methods are used to analyze radicals. In lipids, radical reactions lead to autoxidation and hence flavor reversion. Reactive oxygen species are key components involved in such reactions. Finally, descriptions for phenolic, sequesterant and enzymatic antioxidants and their mode of action are provided. [Pg.3]

Parres-Esclapez et al ). From electron spin resonance spectroscopy (ESR) analysis of Rh/ceria catalysts, it was proposed that the low-temperature NgO decomposition of these catalysts relies on electron excess sites at microinterfaces between the dispersed rhodium component and the ceria support. Experiments performed with isotopic among other techniques, evidenced that the ceria... [Pg.227]

If an optical frequency co is close to one-photon electronic resonance with an intermediate state /, the terms including the denominator -co — 0 will be dominant and we obtain a good approximation by retaining only these (resonant nonlinear Raman spectroscopy). In the absence of such additional electronic resonances, we can neglect the damping coefficient for all denominators whose absolute value is far from zero and write them in terms of real Raman scattering tensor components for the transition from... [Pg.478]

Figure 10 Components of the nuclear pore complex. Structures are available from the PDB and EMDB for some of the components of the nuclear core complex. The individual proteins and small subassemblies shown in ribbon representation are from six PDB entries that provide atomic-level information from X-ray (4GQ2, 3UKY, 4FHN, 3TKN, 4GQ1) or nuclear magnetic resonance spectroscopy (2EC1) studies. The three larger subassemblies drawn as surfaces have been analyzed by cryo-electron microscopy (EMD-5152, EMD-1097) or cryo-electron tomography (EMD-1394). Figure 10 Components of the nuclear pore complex. Structures are available from the PDB and EMDB for some of the components of the nuclear core complex. The individual proteins and small subassemblies shown in ribbon representation are from six PDB entries that provide atomic-level information from X-ray (4GQ2, 3UKY, 4FHN, 3TKN, 4GQ1) or nuclear magnetic resonance spectroscopy (2EC1) studies. The three larger subassemblies drawn as surfaces have been analyzed by cryo-electron microscopy (EMD-5152, EMD-1097) or cryo-electron tomography (EMD-1394).
Resonance Raman Spectroscopy. If the excitation wavelength is chosen to correspond to an absorption maximum of the species being studied, a 10 —10 enhancement of the Raman scatter of the chromophore is observed. This effect is called resonance enhancement or resonance Raman (RR) spectroscopy. There are several mechanisms to explain this phenomenon, the most common of which is Franck-Condon enhancement. In this case, a band intensity is enhanced if some component of the vibrational motion is along one of the directions in which the molecule expands in the electronic excited state. The intensity is roughly proportional to the distortion of the molecule along this axis. RR spectroscopy has been an important biochemical tool, and it may have industrial uses in some areas of pigment chemistry. Two biological appHcations include the deterrnination of helix transitions of deoxyribonucleic acid (DNA) (18), and the elucidation of several peptide stmctures (19). A review of topics in this area has been pubHshed (20). [Pg.210]

In other articles in this section, a method of analysis is described called Secondary Ion Mass Spectrometry (SIMS), in which material is sputtered from a surface using an ion beam and the minor components that are ejected as positive or negative ions are analyzed by a mass spectrometer. Over the past few years, methods that post-ion-ize the major neutral components ejected from surfaces under ion-beam or laser bombardment have been introduced because of the improved quantitative aspects obtainable by analyzing the major ejected channel. These techniques include SALI, Sputter-Initiated Resonance Ionization Spectroscopy (SIRIS), and Sputtered Neutral Mass Spectrometry (SNMS) or electron-gas post-ionization. Post-ionization techniques for surface analysis have received widespread interest because of their increased sensitivity, compared to more traditional surface analysis techniques, such as X-Ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES), and their more reliable quantitation, compared to SIMS. [Pg.559]


See other pages where Electron resonance spectroscopy components is mentioned: [Pg.1191]    [Pg.1200]    [Pg.68]    [Pg.212]    [Pg.22]    [Pg.31]    [Pg.67]    [Pg.516]    [Pg.174]    [Pg.467]    [Pg.13]    [Pg.629]    [Pg.253]    [Pg.22]    [Pg.448]    [Pg.113]    [Pg.108]    [Pg.1191]    [Pg.1200]    [Pg.510]    [Pg.19]    [Pg.94]    [Pg.5]    [Pg.13]    [Pg.20]    [Pg.23]    [Pg.132]    [Pg.86]    [Pg.175]    [Pg.122]    [Pg.1859]    [Pg.421]    [Pg.520]    [Pg.188]    [Pg.131]    [Pg.160]    [Pg.174]   


SEARCH



Electrons resonance spectroscopy

© 2024 chempedia.info