Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron quinones

Transposition of substituents takes place from aromatic compounds based on ortho effects from hydroxyphenyl ketones via assumed nucleophilic attack on the carbonyl carbon atom of the phenoxide site to give a tight tetravalent intermediate that promptly decomposes through benzyne neutral release and formation of a carboxylate anion (Scheme 17.19a). This reaction is hindered from meta- and para-substituted phenols. Alternatively, radical alkane loss is also observed that can be rationalized by considering the formation of an ion-neutral complex (Scheme 17.19b) comprised of quinone-like and alkylide groups. The relatively low ionization energy allows the generation of odd-electron quinone-like species and the elimination of the alkane radical (Scheme 17.19b). [Pg.655]

The term vitamin K2 was applied to 2-methyl-3-difarnesyl-l,4-naphthoquinone, m.p. 54 C, isolated from putrefied fish meal. It now includes a group of related natural compounds ( menaquinones ), differing in the number of isoprene units in the side chain and in their degree of unsaturation. These quinones also appear to be involved in the electron transport chain and oxidative phosphorylation. [Pg.423]

Levstein P R and van Willigen H 1991 Photoinduced electron transfer from porphyrins to quinones in micellar systems an FT-EPR study Chem. Phys. Lett. 187 415-22... [Pg.1621]

Some electron deficient dienophiles are quinones, maleic ahydride, nitroalkenes, a,p-unsaturated ketones, esters and nitriles. [Pg.151]

Electron Transport Between Photosystem I and Photosystem II Inhibitors. The interaction between PSI and PSII reaction centers (Fig. 1) depends on the thermodynamically favored transfer of electrons from low redox potential carriers to carriers of higher redox potential. This process serves to communicate reducing equivalents between the two photosystem complexes. Photosynthetic and respiratory membranes of both eukaryotes and prokaryotes contain stmctures that serve to oxidize low potential quinols while reducing high potential metaHoproteins (40). In plant thylakoid membranes, this complex is usually referred to as the cytochrome b /f complex, or plastoquinolplastocyanin oxidoreductase, which oxidizes plastoquinol reduced in PSII and reduces plastocyanin oxidized in PSI (25,41). Some diphenyl ethers, eg, 2,4-dinitrophenyl 2 -iodo-3 -methyl-4 -nitro-6 -isopropylphenyl ether [69311-70-2] (DNP-INT), and the quinone analogues,... [Pg.40]

Weak to moderate chemiluminescence has been reported from a large number of other Hquid-phase oxidation reactions (1,128,136). The Hst includes reactions of carbenes with oxygen (137), phenanthrene quinone with oxygen in alkaline ethanol (138), coumarin derivatives with hydrogen peroxide in acetic acid (139), nitriles with alkaline hydrogen peroxide (140), and reactions that produce electron-accepting radicals such as HO in the presence of carbonate ions (141). In the latter, exemplified by the reaction of h on(II) with H2O2 and KHCO, the carbonate radical anion is probably a key intermediate and may account for many observations of weak chemiluminescence in oxidation reactions. [Pg.269]

Two and twelve moles of ATP are produced, respectively, per mole of glucose consumed in the glycolytic pathway and each turn of the Krebs (citrate) cycle. In fat metaboHsm, many high energy bonds are produced per mole of fatty ester oxidized. Eor example, 129 high energy phosphate bonds are produced per mole of palmitate. Oxidative phosphorylation has a remarkable 75% efficiency. Three moles of ATP are utilized per transfer of two electrons, compared to the theoretical four. The process occurs via a series of reactions involving flavoproteins, quinones such as coenzyme Q, and cytochromes. [Pg.377]

The decline in immune function may pardy depend on a deficiency of coenzyme Q, a group of closely related quinone compounds (ubiquinones) that participate in the mitochondrial electron transport chain (49). Concentrations of coenzyme Q (specifically coenzyme Q q) appear to decline with age in several organs, most notably the thymus. [Pg.431]

The ionized developers are then capable of diffusing. Transfer of an electron reduces the silver and generates the semiquinone ion radical of the auxiUary developer (eq. 10). In turn, a dye developer molecule of the adjacent layer transfers an electron to the semiquinone, returning the auxiUary developer to its original state and leaving the dye developer in the semiquinone state (eq. 11). Further oxidation of the semiquinone leads to the quinone state of the dye developer. [Pg.499]

This derivative is prepared from an A-protected amino acid and the anthrylmethyl alcohol in the presence of DCC/hydroxybenzotriazole. It can also be prepared from 2-(bromomethyl)-9,10-anthraquinone (Cs2C03). It is stable to moderately acidic conditions (e.g., CF3COOH, 20°, 1 h HBr/HOAc, / 2 = 65 h HCl/ CH2CI2, 20°, 1 h). Cleavage is effected by reduction of the quinone to the hy-droquinone i in the latter, electron release from the —OH group of the hydroqui-none results in facile cleavage of the methylene-carboxylate bond. The related 2-phenyl-2-(9,10-dioxo)anthrylmethyl ester has also been prepared, but is cleaved by electrolysis (—0.9 V, DMF, 0.1 M LiC104, 80% yield). ... [Pg.255]

In the bacterial reaction center the photons are absorbed by the special pair of chlorophyll molecules on the periplasmic side of the membrane (see Figure 12.14). Spectroscopic measurements have shown that when a photon is absorbed by the special pair of chlorophylls, an electron is moved from the special pair to one of the pheophytin molecules. The close association and the parallel orientation of the chlorophyll ring systems in the special pair facilitates the excitation of an electron so that it is easily released. This process is very fast it occurs within 2 picoseconds. From the pheophytin the electron moves to a molecule of quinone, Qa, in a slower process that takes about 200 picoseconds. The electron then passes through the protein, to the second quinone molecule, Qb. This is a comparatively slow process, taking about 100 microseconds. [Pg.239]

While this electron flow takes place, the cytochrome on the periplasmic side donates an electron to the special pair and thereby neutralizes it. Then the entire process occurs again another photon strikes the special pair, and another electron travels the same route from the special pair on the periplasmic side of the membrane to the quinone, Qb, on the cytosolic side, which now carries two extra electrons. This quinone is then released from the reaction center to participate in later stages of photosynthesis. The special pair is again neutralized by an electron from the cytochrome. [Pg.240]

One-electron reduction of a-dicarbonyl compounds gives radical anions known as setnidiones. Closely related are the products of one-electron reduction of aromatic quinones, the semiquinones. Both semidiones and semiquinones can be protonated to give neutral radicals which are relatively stable. [Pg.682]

The ready reversibility of this reaction is essential to the role that quinones play in cellular respiration, the process by which an organism uses molecular- oxygen to convert its food to carbon dioxide, water, and energy. Electrons are not transfened directly from the substrate molecule to oxygen but instead are transfened by way of an electron transport chain involving a succession of oxidation-reduction reactions. A key component of this electron transport chain is the substance known as ubiquinone, or coenzyme Q ... [Pg.1013]

The electron on the bj heme facing the cytosolic side of the membrane is now passed to the bfj evcie on the matrix side of the membrane. This electron transfer occurs against a membrane potential of 0.15 V and is driven by the loss of redox potential as the electron moves from bj = — O.IOOV) to bn = +0.050V). The electron is then passed from bn to a molecule of UQ at a second quinone-binding site, Q , converting this UQ to UQ . The result-... [Pg.688]

The immediate electron acceptor for P700 is a special molecule of chlorophyll. This unique Chi a (Aq) rapidly passes the electron to a specialized quinone (Aj), which in turn passes the e to the first in a series of membrane-bound ferredoxins (Fd, Chapter 21). This Fd series ends with a soluble form of ferredoxin, Fd, which serves as the immediate electron donor to the fiavo-protein (Fp) that catalyzes NADP reduction, namely, ferredoxin NADP reductase. [Pg.722]

FIGURE 22.18 Model of the R. viridis reaction center, (a, b) Two views of the ribbon diagram of the reaction center. Mand L subunits appear in purple and blue, respectively. Cytochrome subunit is brown H subunit is green. These proteins provide a scaffold upon which the prosthetic groups of the reaction center are situated for effective photosynthedc electron transfer. Panel (c) shows the spatial relationship between the various prosthetic groups (4 hemes, P870, 2 BChl, 2 BPheo, 2 quinones, and the Fe atom) in the same view as in (b), but with protein chains deleted. [Pg.725]

The more interesting situation arises in quinones which possess two dissimilar substituents. The site of initial carbon-to-carbon condensation is explicable in terms of the relative electronic effects. Thus condensation of 2-chloro-5-methylbenzoquinone (19) with t-butyl 3-aminocrotonate (20) in hot acetic acid furnished the 4-chloro-7-methylindole (21) in 51% yield. ... [Pg.147]

The redox properties of quinones are crucial to the functioning of living cells, where compounds called ubiquinones act as biochemical oxidizing agents to mediate the electron-transfer processes involved in energy production. Ubiquinones, also called coenzymes Q, are components of the cells of all aerobic organisms, from the simplest bacterium to humans. They are so named because of their ubiquitous occurrence in nature. [Pg.632]

Two-electron reduction of the quinone provides the hydroquinone 10, which may also be formed by two sequential one-electron reductions. It has also been... [Pg.401]

There is a difference in the behavior of benzenediolatoborate and naphthalenedio-latoborate solutions on the one hand, and lithium bis[2,2 -biphenyldiolato(2-)-0,0 ] borate (point 5 in fig. 8) lithium bis[ sali-cylato (2-) Jborate (point 6) or benzene-diolatoborate/phenolate mixed solutions on the other (Fig.8). This can be tentatively explained by the assumption of different decomposition mechanisms due to different structures, which entail the formation of soluble colored quinones from benzenediolatoborate anions and lithium-ion conducting films from solutions of the latter compounds (points 5 and 6) [80], The assumption of a different mechanism and the formation of a lithium-ion conducting, electronically insulating film is supported by... [Pg.477]


See other pages where Electron quinones is mentioned: [Pg.2972]    [Pg.2982]    [Pg.293]    [Pg.41]    [Pg.408]    [Pg.410]    [Pg.431]    [Pg.516]    [Pg.493]    [Pg.503]    [Pg.236]    [Pg.240]    [Pg.642]    [Pg.18]    [Pg.33]    [Pg.592]    [Pg.719]    [Pg.723]    [Pg.724]    [Pg.724]    [Pg.726]    [Pg.146]    [Pg.123]    [Pg.4]    [Pg.281]    [Pg.403]    [Pg.93]    [Pg.94]   
See also in sourсe #XX -- [ Pg.32 ]




SEARCH



Electron involving quinone-like compound

Electron transfer rates quinone reduction

Electronically excited quinones

Pheophytin-quinone electron

Proton-Coupled Intramolecular Electron Transfer in Ferrocene-Quinone Conjugated Oligomers and Polymers

Protonation-induced Intramolecular Electron Transfer in the Ferrocene-Quinone Conjugated System

Quinone as electron carriers

Quinone diacetals electron acceptors

Quinone diacetals electron-transfer oxidation

Quinone electron transfer between

Quinone-chlorophyll electron transfer

Quinones first electron transfer

Quinones second electron transfer

Quinones, primary electron acceptor

© 2024 chempedia.info