Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron-nuclear magnetic parameters

The energy expression, including the electron-nuclear magnetic parameters, is [Pg.164]

Here the first line represents the influence of the magnetic field only, the second and third line the magnetic field-nuclear magnetic moments interaction, the fourth line the magnetic field-electronic magnetic moment interaction and the last one the electronic-nuclear magnetic moments interaction (it is a new term). [Pg.165]


The derivation of the nuclear magnetic parameters, i.e. , 82 and k(2 ° is similar to the case of the electron magnetic parameters. The magnetic susceptibility tensor is identical with the derivation done before and, in the absence of electron spin (spin-orbit interaction), only the diamagnetic term survives. [Pg.157]

More advanced scale was proposed by Kamlet and Taft [52], This phenomenological approach is very universal as may be successfully applied to the positions and intensities of maximal absorption in IR, NMR (nuclear magnetic resonance), ESR (electron spin resonance), and UV-VS absorption and fluorescence spectra, and to many other physical or chemical parameters (reaction rates, equilibrium constant, etc.). The scale is quite simple and may be presented as ... [Pg.208]

Various theoretical methods (self-consistent field molecular orbital (SCF-MO) modified neglect of diatomic overlap (MNDO), complete neglect of differential overlap (CNDO/2), intermediate neglect of differential overlap/screened approximation (INDO/S), and STO-3G ab initio) have been used to calculate the electron distribution, structural parameters, dipole moments, ionization potentials, and data relating to ultraviolet (UV), nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), photoelectron (PE), and microwave spectra of 1,3,4-oxadiazole and its derivatives <1984CHEC(6)427, 1996CHEC-II(4)268>. [Pg.398]

Spectroscopic studies on the Fe-Mo protein by EPR and Mossbauer spectroscopy have shown six iron atoms each in a distinctive magnetic environment coupled to an overall S=3/2 spin system (6,7,8) and electron nuclear double resonance (ENDOR) studies suggest one molybdenum per spin system (8). The 5 Fe signals (five or six doublets) observed in the ENDOR spectra (8) indicate a rather asymmetric structure for the Fe/Mo/S aggregate in which the iron atoms roughly can be grouped into two sets of trios, each set having very similar hyperfme parameters. [Pg.391]

Almost all the parameters yielded by the various types of radiofrequency spectroscopy arise from the interaction of nuclear magnetic or electrostatic moments with the magnetic or electrostatic fields produced by the surrounding electrons. A consideration of the way these interactions arise shows that they fall into two groups one of the groups contains terms proportional to the electron density at the nucleus, N, itself, Vn(0), and consequently reflects only the s-character of the wave-function centered on N, v>n while the other is proportional to the value for all or some of the electrons surroimding the nucleus N (Table 1). This latter term vanishes for s-type orbitals and for p, d, f orbitals of the same principal quantum number has values in the order p > > d > > f. In practice this means that in a first approximation, only p-electrons contribute to and that the direct effect of the d-orbitals is only... [Pg.4]

In addition to the isomer shift and the quadrupole splitting, it is possible to obtain the hyperfine coupling tensor from a Mossbauer experiment if a magnetic field is applied. This additional parameter describes the interactions between impaired electrons and the nuclear magnetic moment. Three terms contribute to the hyperfine coupling (i) the isotropic Fermi contact, (ii) the spin—dipole... [Pg.330]

The calculation of magnetic parameters such as the hyperfine coupling constants and g-factors for oligonuclear clusters is of fundamental importance as a tool for the evaluation of spectroscopic data from EPR and ENDOR experiments. The hyperfine interaction is experimentally interpreted with the spin Hamiltonian (SH) H = S - A-1, where S is the fictitious, electron spin operator related to the ground state of the cluster, A is the hyperfine tensor, and I is the nuclear spin operator. Consequently, it is... [Pg.333]

Electron spin resonance (ESR) measures the absorption spectra associated with the energy states produced from the ground state by interaction with the magnetic field. This review deals with the theory of these states, their description by a spin Hamiltonian and the transitions between these states induced by electromagnetic radiation. The dynamics of these transitions (spin-lattice relaxation times, etc.) are not considered. Also omitted are discussions of other methods of measuring spin Hamiltonian parameters such as nuclear magnetic resonance (NMR) and electron nuclear double resonance (ENDOR), although results obtained by these methods are included in Sec. VI. [Pg.90]

Electron spin resonance studies of silver(II) pyridine complexes have proved to be extremely useful in determining the nature of the spedes in solution. Since natural silver has two isotopes, 107Ag and 109Ag, in approximately the same abundance, both of spin / = J, and since their nuclear magnetic moments differ by less than 15%, interpretation of spectra is often considered in terms of a single nucleus. The forms of the hyperfine splitting patterns for IN, cis and trans 2N, 3N and 4N, would be expected to be quite different and hence the number of pyridines can be readily assessed from well-resolved spectra. Spin Hamilton parameters obtained from both solid and frozen solution spectra are collected in Table 64.497 499 501-510... [Pg.840]

In the author s opinion, the better approach to experimentally study the morphology of the silica surface is with the help of physical adsorption (see Chapter 6). Then, with the obtained, adsorption data, some well-defined parameters can be calculated, such as surface area, pore volume, and pore size distribution. This line of attack (see Chapter 4) should be complemented with a study of the morphology of these materials by scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning probe microscopy (SPM), or atomic force microscopy (AFM), and the characterization of their molecular and supramolecular structure by Fourier transform infrared (FTIR) spectrometry, nuclear magnetic resonance (NMR) spectrometry, thermal methods, and possibly with other methodologies. [Pg.85]

Volume 21, Part C, is concerned with electronic and transport properties, including investigative techniques employing field effect, capacitance and deep level transient spectroscopy, nuclear and optically detected magnetic resonance, and electron spin resonance. Parameters and phenomena considered include electron densities, carrier mobilities and diffusion lengths, densities of states, surface effects, and the Staebler-Wronski effect. [Pg.314]

One of the most interesting and important results of the study was to show how the molecular constants change as the vibrational quantum number v increases. This behaviour is presented in table 8.10. The electron spin-spin and rotational constant values came, initially, from the analysis of the optical electronic spectrum [47], although the values of the spin-spin constants for different vibrational levels were refined by the analysis of the radiofrequency spectrum. The nuclear hyperfine parameters are obtained solely from the magnetic resonance experiments. We will discuss the significance of these constants in the following subsection. [Pg.461]


See other pages where Electron-nuclear magnetic parameters is mentioned: [Pg.164]    [Pg.164]    [Pg.549]    [Pg.91]    [Pg.119]    [Pg.213]    [Pg.321]    [Pg.89]    [Pg.289]    [Pg.173]    [Pg.388]    [Pg.344]    [Pg.211]    [Pg.527]    [Pg.233]    [Pg.191]    [Pg.607]    [Pg.549]    [Pg.96]    [Pg.21]    [Pg.15]    [Pg.270]    [Pg.219]    [Pg.89]    [Pg.285]    [Pg.669]    [Pg.273]    [Pg.147]    [Pg.64]    [Pg.59]    [Pg.86]    [Pg.89]    [Pg.126]    [Pg.116]    [Pg.568]    [Pg.280]    [Pg.211]   


SEARCH



Electron magnetic parameters

Electron magnetism

Electronic parameters

Magnetism parameters

Magnetization electronic

Nuclear magnetic parameters

Nuclear parameters

© 2024 chempedia.info