Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silver natural

This is attributed to the different nature of the bonding of sulphur to silver as compared to gold and the slightly different packing density. The coherence length detennined with He atom diffraction was found to be 12 mn [162]. [Pg.2625]

Silver is formed in nature as argentite. AgjS and horn silver. AgCl. The extraction of silver depends upon the fact that it very readily forms a dicyanoargentate(I) complex, [Ag(CN)2] (linear), and treatment of a silver ore with aqueous cyanide ion CN extracts the silver as this complex. The silver is then displaced from the complex by zinc ... [Pg.425]

Selectivity Due to the chemical nature of the precipitation process, precipitants are usually not selective for a single analyte. For example, silver is not a selective precipitant for chloride because it also forms precipitates with bromide and iodide. Consequently, interferents are often a serious problem that must be considered if accurate results are to be obtained. [Pg.255]

Deteriora.tlon. Apart from physical damage that can result from carelessness, abuse, and vandaUsm, the main problem with metal objects Hes in thek vulnerabihty to corrosion (see Corrosion and corrosion control) (127,128). The degree of corrosion depends on the nature and age of the object. Corrosion can range from a light tarnish, which may be aesthetically disfiguring on a poHshed silver or brass artifact, to total mineralization, a condition not uncommon for archaeological material. [Pg.425]

Another ak pollutant that can have very serious effects is hydrogen sulfide, which is largely responsible for the tarnishing of silver, but also has played a destmctive role in the discoloration of the natural patinas on ancient bronzes through the formation of copper sulfide. Moreover, a special vulnerabihty is created when two metals are in contact. The electromotive force can result in an accelerated corrosion, eg, in bronzes having kon mounting pins. [Pg.425]

Deposits. Selenium forms natural compounds with 16 other elements. It is a main constituent of 39 mineral species and a minor component of 37 others, chiefly sulfides. The minerals are finely disseminated and do not form a selenium ore. Because there are no deposits that can be worked for selenium recovery alone, there are no mine reserves. Nevertheless, the 1995 world reserves, chiefly in nonferrous metals sulfide deposits, are ca 70,000 metric tons and total resources are ca 130,000 t (24). The principal resources of the world are in the base metal sulfide deposits that are mined primarily for copper, zinc, nickel, and silver, and to a lesser extent, lead and mercury, where selenium recovery is secondary. [Pg.327]

Only three simple silver salts, ie, the fluoride, nitrate, and perchlorate, are soluble to the extent of at least one mole per Hter. Silver acetate, chlorate, nitrite, and sulfate are considered to be moderately soluble. AH other silver salts are, at most, spatingly soluble the sulfide is one of the most iasoluble salts known. SHver(I) also forms stable complexes with excess ammonia, cyanide, thiosulfate, and the haUdes. Complex formation often results ia the solubilization of otherwise iasoluble salts. Silver bromide and iodide are colored, although the respective ions are colorless. This is considered to be evidence of the partially covalent nature of these salts. [Pg.88]

Silver Sulfide. Silver sulfide, Ag2S, forms as a finely divided black precipitate when solutions or suspensions of most silver salts are treated with an alkaline sulfide solution or hydrogen sulfide. Silver sulfide has a dimorphic crystal stmcture. Transition from the rhombic (acanthite) to the cubic (argentite) form occurs at 175°C. Both crystal stmctures are found in nature. [Pg.90]

In 1980, the EPA pubHshed ambient water quaHty criteria for silver. An upper limit of 50 f-lg/L in natural waters was set to provide adequate protection against adverse health effects (38). In 1992, EPA deleted the human health criteria for silver from the ambient water quaHty criteria to be consistent with the drinking water standards (39). [Pg.91]

Free ionic silver readily forms soluble complexes or insoluble materials with dissolved and suspended material present in natural waters, such as sediments and sulfide ions (44). The hardness of water is sometimes used as an indicator of its complex-forming capacity. Because of the direct relationship between the availabiUty of free silver ions and adverse environmental effects, the 1980 ambient freshwater criterion for the protection of aquatic life is expressed as a function of the hardness of the water in question. The maximum recommended concentration of total recoverable silver, in fresh water is thus given by the following expression (45) in Fg/L. [Pg.92]

In secondary wastewater treatment plants receiving silver thiosulfate complexes, microorganisms convert this complex predominately to silver sulfide and some metallic silver (see Wastes, INDUSTRIAL). These silver species are substantially removed from the treatment plant effluent at the settling step (47,48). Any silver entering municipal secondary treatment plants tends to bind quickly to sulfide ions present in the system and precipitate into the treatment plant sludge (49). Thus, silver discharged to secondary wastewater treatment plants or into natural waters is not present as the free silver ion but rather as a complexed or insoluble species. [Pg.92]


See other pages where Silver natural is mentioned: [Pg.3]    [Pg.361]    [Pg.3]    [Pg.361]    [Pg.113]    [Pg.161]    [Pg.204]    [Pg.204]    [Pg.113]    [Pg.3]    [Pg.361]    [Pg.3]    [Pg.361]    [Pg.113]    [Pg.161]    [Pg.204]    [Pg.204]    [Pg.113]    [Pg.181]    [Pg.324]    [Pg.368]    [Pg.416]    [Pg.1681]    [Pg.1702]    [Pg.1057]    [Pg.1059]    [Pg.81]    [Pg.195]    [Pg.207]    [Pg.167]    [Pg.208]    [Pg.224]    [Pg.162]    [Pg.171]    [Pg.182]    [Pg.196]    [Pg.94]    [Pg.285]    [Pg.446]    [Pg.457]    [Pg.92]    [Pg.520]    [Pg.80]    [Pg.83]    [Pg.88]    [Pg.88]    [Pg.65]    [Pg.396]    [Pg.414]   
See also in sourсe #XX -- [ Pg.25 , Pg.165 ]




SEARCH



Natural fish silver

Silver catalysts natural product synthesis

Silver in nature

Silver natural resources

© 2024 chempedia.info