Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron microscopy diameters

Figure C2.17.4. Transmission electron micrograph of a field of Zr02 (tetragonal) nanocrystals. Lower-resolution electron microscopy is useful for characterizing tire size distribution of a collection of nanocrystals. This image is an example of a typical particle field used for sizing puriDoses. Here, tire nanocrystalline zirconia has an average diameter of 3.6 nm witli a polydispersity of only 5% 1801. Figure C2.17.4. Transmission electron micrograph of a field of Zr02 (tetragonal) nanocrystals. Lower-resolution electron microscopy is useful for characterizing tire size distribution of a collection of nanocrystals. This image is an example of a typical particle field used for sizing puriDoses. Here, tire nanocrystalline zirconia has an average diameter of 3.6 nm witli a polydispersity of only 5% 1801.
Comparison of particle diameter of colloidal silica by electron microscopy (cf,). by nitrogen adsorption (d ) and by light scattering (d,)... [Pg.65]

Figure 1.1 is a rather remarkable photograph which shows individual polystyrene molecules as spherical blobs having average diameters of about 20 nm. The picture is an electron micrograph in which a 10" % solution of polystyrene was deposited on a suitable substrate, the solvent evaporated, and the contrast enhanced by shadow casting. There is a brief discussion of both electron microscopy and shadowing in Sec. 4.7. Several points should be noted in connection with Fig. 1.1 ... Figure 1.1 is a rather remarkable photograph which shows individual polystyrene molecules as spherical blobs having average diameters of about 20 nm. The picture is an electron micrograph in which a 10" % solution of polystyrene was deposited on a suitable substrate, the solvent evaporated, and the contrast enhanced by shadow casting. There is a brief discussion of both electron microscopy and shadowing in Sec. 4.7. Several points should be noted in connection with Fig. 1.1 ...
Characterization. When siHca gel is used as an adsorbent, the pore stmcture determines the gel adsorption capacity. Pores are characterized by specific surface area, specific pore volume (total volume of pores per gram of solid), average pore diameter, pore size distribution, and the degree to which entrance to larger pores is restricted by smaller pores. These parameters are derived from measuring vapor adsorption isotherms, mercury intmsion, low angle x-ray scattering, electron microscopy, gas permeabiHty, ion or molecule exclusion, or the volume of imbibed Hquid (1). [Pg.491]

The secondary stmcture of the plasminogen molecule, as determined by circular dichroism spectra, is 80% random coil, 20% beta-stmcture, and 0% alpha-helix. Electron microscopy has demonstrated the tertiary stmcture of plasminogen to be a 22- to 24-nm long spiral filament with a diameter of 2.2 to 2.4 nm. [Pg.179]

Regarding a historical perspective on carbon nanotubes, very small diameter (less than 10 nm) carbon filaments were observed in the 1970 s through synthesis of vapor grown carbon fibers prepared by the decomposition of benzene at 1100°C in the presence of Fe catalyst particles of 10 nm diameter [11, 12]. However, no detailed systematic studies of such very thin filaments were reported in these early years, and it was not until lijima s observation of carbon nanotubes by high resolution transmission electron microscopy (HRTEM) that the carbon nanotube field was seriously launched. A direct stimulus to the systematic study of carbon filaments of very small diameters came from the discovery of fullerenes by Kroto, Smalley, and coworkers [1], The realization that the terminations of the carbon nanotubes were fullerene-like caps or hemispheres explained why the smallest diameter carbon nanotube observed would be the same as the diameter of the Ceo molecule, though theoretical predictions suggest that nanotubes arc more stable than fullerenes of the same radius [13]. The lijima observation heralded the entry of many scientists into the field of carbon nanotubes, stimulated especially by the un-... [Pg.36]

The earliest observations of carbon nanotubes with very small (nanometer) diameters [151, 158, 159] are shown in Fig. 14. Here we see results of high resolution transmission electron microscopy (TEM) measurements, providing evidence for m-long multi-layer carbon nanotubes, with cross-sections showing several concentric coaxial nanotubes and a hollow core. One nanotube has... [Pg.62]

A special mention is in order of high-resolution electron microscopy (HREM), a variant that permits columns of atoms normal to the specimen surface to be imaged the resolution is better than an atomic diameter, but the nature of the image is not safely interpretable without the use of computer simulation of images to check whether the assumed interpretation matches what is actually seen. Solid-state chemists studying complex, non-stoichiometric oxides found this image simulation approach essential for their work. The technique has proved immensely powerful, especially with respect to the many types of defect that are found in microstructures. [Pg.221]

The length and the diameter of MWCNT can be measured directly by TEM. From high-resolution transmission electron microscopy (HRTEM) images exhibiting oo.l fringes follows the number of coaxial tubes and possibly the microstructure of the caps in MWCNT, as viewed along the incident electron beam [24], Also anomalous intercylinder spacings and defects are revealed in this way [1,11]. [Pg.26]

Several structural characterisations of carbon nanotubes (CNTs) with the cylindrical graphite are reviewed from the viewpoint of transmission electron microscopy (TEM). Especially, electron energy loss spectroscopy (EELS) by using an energy-fdtered TEM is applied to reveal the dependence of fine structure of EELS on the diameter and the anisotropic features of CNTs. [Pg.29]

Multi-walled CNTs (MWCNTs) are produced by arc discharge between graphite electrodes but other carbonaceous materials are always formed simultaneously. The main by-product, nanoparticles, can be removed utilizing the difference in oxidation reaction rates between CNTs and nanoparticles [9]. Then, it was reported that CNTs can be aligned by dispersion in a polymer resin matrix [10]. However, the parameters of CNTs are uncontrollable, such as the diameter, length, chirality and so on, at present. Furthermore, although the CNTs are observed like cylinders by transmission electron microscopy (TEM), some reports have pointed out the possibility of non-cylindrical structures and the existence of defects [11-14]. [Pg.76]

The three-dimensional structure of the sodium channel (from electric eel) was determined at 19-A resolution using cryo-electron microscopy and single-particle image analysis. The sodium channel has a bell-shaped outer surface of 135 A in height, 100 A in side length at the square bottom, and 65 A in diameter of the spherical top. An interesting finding is that there are several inner cavities connected to outer orifices. [Pg.1305]


See other pages where Electron microscopy diameters is mentioned: [Pg.2912]    [Pg.63]    [Pg.201]    [Pg.302]    [Pg.302]    [Pg.36]    [Pg.487]    [Pg.78]    [Pg.131]    [Pg.340]    [Pg.347]    [Pg.539]    [Pg.541]    [Pg.223]    [Pg.288]    [Pg.14]    [Pg.112]    [Pg.67]    [Pg.197]    [Pg.206]    [Pg.65]    [Pg.66]    [Pg.1]    [Pg.12]    [Pg.47]    [Pg.87]    [Pg.111]    [Pg.112]    [Pg.117]    [Pg.153]    [Pg.91]    [Pg.136]    [Pg.156]    [Pg.398]    [Pg.282]    [Pg.690]    [Pg.34]    [Pg.50]    [Pg.124]   
See also in sourсe #XX -- [ Pg.72 ]




SEARCH



Electron diameter

© 2024 chempedia.info