Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron formation constants

The pale blue tris(2,2 -bipyridine)iron(3+) ion [18661-69-3] [Fe(bipy)2], can be obtained by oxidation of [Fe(bipy)2]. It cannot be prepared directiy from iron(III) salts. Addition of 2,2 -bipyridine to aqueous iron(III) chloride solutions precipitates the doubly hydroxy-bridged species [(bipy)2Fe(. t-OH)2Fe(bipy)2]Cl4 [74930-87-3]. [Fe(bipy)2] has an absorption maximum at 610 nm, an absorptivity of 330 (Mem), and a formation constant of 10. In mildly acidic to alkaline aqueous solutions the ion is reduced to the iron(II) complex. [Fe(bipy)2] is frequentiy used in studies of electron-transfer mechanisms. The triperchlorate salt [15388-50-8] is isolated most commonly. [Pg.440]

It is now well established that in lithium batteries (including lithium-ion batteries) containing either liquid or polymer electrolytes, the anode is always covered by a passivating layer called the SEI. However, the chemical and electrochemical formation reactions and properties of this layer are as yet not well understood. In this section we discuss the electrode surface and SEI characterizations, film formation reactions (chemical and electrochemical), and other phenomena taking place at the lithium or lithium-alloy anode, and at the Li. C6 anode/electrolyte interface in both liquid and polymer-electrolyte batteries. We focus on the lithium anode but the theoretical considerations are common to all alkali-metal anodes. We address also the initial electrochemical formation steps of the SEI, the role of the solvated-electron rate constant in the selection of SEI-building materials (precursors), and the correlation between SEI properties and battery quality and performance. [Pg.420]

According to the Marcus theory [64] for outer-sphere reactions, there is good correlation between the heterogeneous (electrode) and homogeneous (solution) rate constants. This is the theoretical basis for the proposed use of hydrated-electron rate constants (ke) as a criterion for the reactivity of an electrolyte component towards lithium or any electrode at lithium potential. Table 1 shows rate-constant values for selected materials that are relevant to SE1 formation and to lithium batteries. Although many important materials are missing (such as PC, EC, diethyl carbonate (DEC), LiPF6, etc.), much can be learned from a careful study of this table (and its sources). [Pg.428]

The basis for the toxicological activity of this substance is the reaction of cobalt ion with cyanide ion to form a relatively nontoxic and stable ion complex. The hexacyanocobaltate ion contains a Co2+ central metal ion with six cyanide ions as ligands. This coordination complex involves six coordinate covalent bonds whereby each cyanide ion supplies a pair of electrons to form each covalent bond with the central cobalt ion. The formation constant for the hexacyanocobaltate ion is even larger than for dicobalt EDTA,3 and thus the cobalt ion preferentially exchanges an EDTA ligand for six cyano ligands ... [Pg.119]

A relatively strong organization of an electron donor by an acceptor is typically indicated by experimental values of KEUA or KC f> > 10 M-1. For intermediate values of the formation constant, i.e., 1 < KE A < 10 m, the donor/acceptor organization is considered to be weak.17 Finally, at the limit of very weak donor/acceptor organizations with KEDA 1, the lifetime of the EDA complex can be on the order of a molecular collision these are referred to as contact charge-transfer complexes.18... [Pg.197]

A general difficulty encountered in kinetic studies of outer-sphere electron-transfer processes concerns the separation of the precursor formation constant (K) and the electron-transfer rate constant (kKT) in the reactions outlined above. In the majority of cases, precursor formation is a diffusion controlled step, followed by rate-determining electron transfer. In the presence of an excess of Red, the rate expression is given by... [Pg.39]

The recent time-resolved spectroscopic studies described above (Sections 2 and 3) identify the charge-transfer excitation (/n cr) of aromatic EDA complexes with various types of acceptors (A) to their ion-radical pairs [ArH+-,A ] (Mataga, 1984 Hilinski et al., 1984 Jones, 1988). Such electronic transitions in weak EDA complexes, like those of the halogen acceptors, are mainly associated with the excited states, such as in (32), since the variations in the ground state are minor owing to formation constants K that are not strongly dependent on the arene donor (Briegleb, 1961, pp. 106 ff.). [Pg.226]

La Mar (150) and Walker (156) have found a thermodynamic cis effect in the formation of hemichrome salts [Fe(TRP)L2]Cl (->-[27]) according to equilibrium (77) which was studied by 1H-NMR and optical spectroscopy for L = l-Melm (Table 22). As the electron-donating power of the para-phenyl-substituent of the porphyrin increases, the total formation constant, /J2, increases. This is because the product of the reaction contains a positively charged center which is stabilized by electron-donating groups. As a Hammet relation exists, the mesomeric part of the electronic transmission is also operative, and hence dative porphyrin-to-metal tr-bonding seems to be involved. [Pg.132]

In biological systems, electron transfer kinetics are determined by many factors of different physical origin. This is especially true in the case of a bimolecular reaction, since the rate expression then involves the formation constant Kf of the transient bimolecular complex as well as the rate of the intracomplex transfer [4]. The elucidation of the factors that influence the value of Kf in redox reactions between two proteins, or between a protein and organic or inorganic complexes, has been the subject of many experimental studies, and some of them are presented in this volume. The complexation step is essential in ensuring specific recognition between physiological partners. However, it is not considered in the present chapter, which deals with the intramolecular or intracomplex steps which are the direct concern of electron transfer theories. [Pg.5]

There are linear correlations between log k (formation) and certain properties of the ligand (number of nitrogen atoms or electron-donor constant ). The enhanced rate resides largely... [Pg.214]

Following earlier studies of the oxidation of formic and oxalic acids by pyridinium fluoro-, chloro-, and bromo-chromates, Banerji and co-workers have smdied the kinetics of oxidation of these acids by 2, 2Tbipyridinium chlorochromate (BPCC) to C02. The formation constant of the initially formed BPCC-formic acid complex shows little dependence on the solvent, whilst a more variable rate constant for its decomposition to products correlates well with the cation-solvating power. This indicates the formation of an electron-deficient carbon centre in the transition state, possibly due to hydride transfer in an anhydride intermediate HCOO—Cr(=0)(0H)(Cl)—O—bpyH. A cyclic intermediate complex, in which oxalic acid acts as a bidentate ligand, is proposed to account for the unfavourable entropy term observed in the oxidation of this acid. [Pg.219]

Table 2 Formation Constants K), Fluorescence Maxima (Xmax), Fluorescence Lifetimes (x), the One-Electron Reduction Potentials (E°ed ) of the Singlet Excited States of Mg(C104)2, Sc(OTf)3 and MesSiOTf Complexes of Aromatic Carbonyl Compounds... Table 2 Formation Constants K), Fluorescence Maxima (Xmax), Fluorescence Lifetimes (x), the One-Electron Reduction Potentials (E°ed ) of the Singlet Excited States of Mg(C104)2, Sc(OTf)3 and MesSiOTf Complexes of Aromatic Carbonyl Compounds...

See other pages where Electron formation constants is mentioned: [Pg.951]    [Pg.1033]    [Pg.951]    [Pg.1033]    [Pg.175]    [Pg.440]    [Pg.281]    [Pg.412]    [Pg.266]    [Pg.684]    [Pg.113]    [Pg.117]    [Pg.257]    [Pg.345]    [Pg.120]    [Pg.140]    [Pg.105]    [Pg.331]    [Pg.345]    [Pg.119]    [Pg.121]    [Pg.201]    [Pg.298]    [Pg.137]    [Pg.326]    [Pg.597]    [Pg.371]    [Pg.389]    [Pg.28]    [Pg.537]    [Pg.556]    [Pg.186]    [Pg.192]    [Pg.234]    [Pg.77]    [Pg.96]    [Pg.277]    [Pg.90]    [Pg.185]    [Pg.134]    [Pg.260]   
See also in sourсe #XX -- [ Pg.417 , Pg.418 ]




SEARCH



Formation constant

© 2024 chempedia.info