Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron band structure bands

Yussouff M 1987 Fast self-consistent KKR method Electronic Band Structure and Its Applications (Lecture Notes in Physics vol 283) ed M Yussouff (Berlin Springer) pp 58-76... [Pg.2232]

Obtaining information on a material s electronic band structure (related to the fundamental band gap) and analysis of luminescence centers Measurements of the dopant concentration and of the minority carrier diffusion length and lifetime... [Pg.150]

O.K. Andersen, O.Jepsen, and M. Sob, in Electronic Band Structure and its Applications, Springer Lecture Notes, (1987)... [Pg.237]

Sakai N, Ebina Y, Takada K, Sasaki T (2004) Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. J Am Chem Soc 126 5851-5858... [Pg.305]

Seebeck used antimony and copper wires and found the current to be affected by the measuring instrument (ammeter). But, he also found that the voltage generated (EMF) was directly proportional to the difference in temperature of the two junctions. Peltier, in 1834, then demonstrated that if a current was induced in the circuit of 7.1.3., it generated heat at the junctions. In other words, the SEEBECK EFFECT was found to be reversible. Further work led to the development of the thermocouple, which today remains the primary method for measurement of temperature. Nowadays, we know that the SEEBECK EFFECT arises because of a difference in the electronic band structure of the two metals at the junction. This is illustrated as follows ... [Pg.359]

A list of recent solid-state calculations is given in Refs. [43-45]. We mention only a few of the most recent results discussing relativistic effects. Christensen and Kolar revealed very large relativistic effects in electronic band structure calculations for CsAu... [Pg.217]

The structure of MnP is a distorted variant of the NiAs type the metal atoms also have close contacts with each other in zigzag lines parallel to the a-b plane, which amounts to a total of four close metal atoms (Fig. 17.5). Simultaneously, the P atoms have moved up to a zigzag line this can be interpreted as a (P-) chain in the same manner as in Zintl phases. In NiP the distortion is different, allowing for the presence of P2 pairs (P ). These distortions are to be taken as Peierls distortions. Calculations of the electronic band structures can be summarized in short 9-10 valence electrons per metal atom favor the NiAs structure, 11-14 the MnP structure, and more than 14 the NiP structure (phosphorus contributes 5 valence electrons per metal atom) this is valid for phosphides. Arsenides and especially antimonides prefer the NiAs structure also for the larger electron counts. [Pg.197]

The electronic band structure of a neutral polyacetylene is characterized by an empty band gap, like in other intrinsic semiconductors. Defect sites (solitons, polarons, bipolarons) can be regarded as electronic states within the band gap. The conduction in low-doped poly acetylene is attributed mainly to the transport of solitons within and between chains, as described by the intersoliton-hopping model (IHM) . Polarons and bipolarons are important charge carriers at higher doping levels and with polymers other than polyacetylene. [Pg.336]

Of the various semiconductors tested to date, Ti02 is the most promising photocatalyst because of its appropriate electronic band structure, photostability, chemical inertness and commercial availability. But currently, a variety of nanostmctured Ti02 with different morphologies including nanorods, nanowires, nanostmctured films or coatings, nanotubes, and mesoporous/nanoporous structures have attracted much attention. [Pg.163]

The different types of quinones active in photosynthesis are being used as electron acceptors in solar cells. The compounds such as Fd and NADP could also be used as electron/proton acceptors in the photoelectrochemical cells. Several researchers have attempted the same approach with a combination of two or more solid-state junctions or semiconductor-electrolyte junctions using bulk materials and powders. Here, the semiconductors can be chosen to carry out either oxygen- or hydrogen-evolving photocatalysis based on the semiconductor electronic band structure. [Pg.264]

The band electronic structure of kl-(BEDT-TTF)2Cu(CF3)4(TCE) was calculated through the use of Hiickel tight binding computations [39] and the infrared properties analyzed [40]. These calculations indicate that the electronic band structure [10, 41] and infrared response [42] is similar to that found in the k-(BEDT-TTF)2Cu(dca)X (X = Cl and Br) salts. Specific heat measurements of kl-(BEDT-TTF)2Ag(CF3)4(TCE) indicate a linear coefficient (y = 50 mJ mol 1 K2), which is a factor of nine greater than expected from a free-electron picture [43],... [Pg.11]

Coherent lattice motions can create periodic modulation of the electronic band structure. Time-resolved photo-emission (TRPE) studies [20-22] demonstrated the capability to detect coherent phonons as an oscillatory shift of... [Pg.52]

P. Barta, P. Dannetun, S. Stafstrom, M. Zagorska, and A. Pron, Temperature evolution of the electronic band structure of the undoped and doped regioregular analog of poly(3-alkylthio-phenes) a spectroscopic and theoretical study, J. Chem. Phys., 100 1731-1741, 1994. [Pg.282]

The minute network structure of microporous silicon is between the two extremes of a single atom and a large crystal. A crystallite of a few hundred silicon atoms is large enough to have a rich electronic band structure but is still small enough to show an increase in the energy of an electron-hole pair (exciton) due to... [Pg.150]


See other pages where Electron band structure bands is mentioned: [Pg.1169]    [Pg.144]    [Pg.308]    [Pg.218]    [Pg.728]    [Pg.732]    [Pg.734]    [Pg.734]    [Pg.107]    [Pg.279]    [Pg.483]    [Pg.112]    [Pg.159]    [Pg.26]    [Pg.468]    [Pg.542]    [Pg.593]    [Pg.351]    [Pg.287]    [Pg.163]    [Pg.427]    [Pg.216]    [Pg.267]    [Pg.453]    [Pg.241]    [Pg.697]    [Pg.278]    [Pg.18]    [Pg.28]    [Pg.80]    [Pg.18]    [Pg.20]    [Pg.324]    [Pg.216]    [Pg.198]    [Pg.550]    [Pg.377]    [Pg.491]    [Pg.199]   


SEARCH



Band structure

Band structure bands

Banded structures

Electronic band structure

© 2024 chempedia.info