Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron affinity and

Electron affinity and hydration energy decrease with increasing atomic number of the halogen and in spite of the slight fall in bond dissociation enthalpy from chlorine to iodine the enthalpy changes in the reactions... [Pg.315]

Bromine has a lower electron affinity and electrode potential than chlorine but is still a very reactive element. It combines violently with alkali metals and reacts spontaneously with phosphorus, arsenic and antimony. When heated it reacts with many other elements, including gold, but it does not attack platinum, and silver forms a protective film of silver bromide. Because of the strong oxidising properties, bromine, like fluorine and chlorine, tends to form compounds with the electropositive element in a high oxidation state. [Pg.322]

Quantum chemical descriptors such as atomic charges, HOMO and LUMO energies, HOMO and LUMO orbital energy differences, atom-atom polarizabilities, super-delocalizabilities, molecular polarizabilities, dipole moments, and energies sucb as the beat of formation, ionization potential, electron affinity, and energy of protonation are applicable in QSAR/QSPR studies. A review is given by Karelson et al. [45]. [Pg.427]

An extended Huckel calculation is a simple means for modeling the valence orbitals based on the orbital overlaps and experimental electron affinities and ionization potentials. In some of the physics literature, this is referred to as a tight binding calculation. Orbital overlaps can be obtained from a simplified single STO representation based on the atomic radius. The advantage of extended Huckel calculations over Huckel calculations is that they model all the valence orbitals. [Pg.33]

Thus far the importance of carbon cluster chemistry has been in the discovery of new knowl edge Many scientists feel that the earliest industrial applications of the fullerenes will be based on their novel electrical properties Buckminsterfullerene is an insulator but has a high electron affinity and is a superconductor in its reduced form Nanotubes have aroused a great deal of interest for their electrical properties and as potential sources of carbon fibers of great strength... [Pg.437]

To calculate electron production must be balanced against electron depletion. Free electrons in the gas can become attached to any of a number of species in a combustion gas which have reasonably large electron affinities and which can readily capture electrons to form negative ions. In a combustion gas, such species include OH (1.83 eV), O (1.46 eV), NO2 (3.68 eV), NO (0.09 eV), and others. Because of its relatively high concentration, its abUity to capture electrons, and thus its abUity to reduce the electrical conductivity of the gas, the most important negative ion is usuaUyOH . [Pg.419]

The original paper defining the Gaussian-2 method by Curtiss, Raghavachari, Trucks and Pople tested the method s effectiveness by comparing its results to experimental thermochemical data for a set of 125 calculations 55 atomization energies, 38 ionization potentials, 25 electron affinities and 7 proton affinities. All compounds included only first and second-row heavy atoms. The specific calculations chosen were selected because of the availability of high accuracy experimental values for these thermochemical quantities. [Pg.144]

The common characteristics of the above mentioned heterocycles are electron withdrawing and a site of unsaturation that can stabilize the negative charge developed by the displacement reaction through resonance. For example, the thiazole activated halo displacement is similar to that of a conventional activating group as shown in Scheme 1. The activation is derived from the electron affinity and the stabilization of the negative... [Pg.39]

The ionization energy, electron affinity, and orbital occupancy determine the chemical behavior, or reactivity, of the elements. The uppermost (high-est-energy) occupied orbitals are called the valence orbitals the electrons occupying them are the valence electrons. An element s ionization energy, the energy required to remove an electron from a neutral atom, is related to its reactivity A low ionization energy means that the valence electron is readily removed, and the element is likely to become involved in... [Pg.805]

Schematic energy level diagrams of a metal/polymer/metal structure before and after the layers are in contact are shown in the top two drawings of Figure 11-6. Before contact, the metals and the polymer have relative energies determined by the metal work functions and the electron affinity and ionization potential of the polymer. After contact there is a built-in electric field in the structure due to the different Schottky energy barriers of the asymmetric metal contacts. Capacitance-voltage measurements demonstrate that the metal/polymer/metal structures are fully depleted and therefore the electric field is constant throughout the bulk of the structure [31, 35]. The built-in potential, Vhh i.e. the product of the constant built-in electric field and the layer thickness may be written... Schematic energy level diagrams of a metal/polymer/metal structure before and after the layers are in contact are shown in the top two drawings of Figure 11-6. Before contact, the metals and the polymer have relative energies determined by the metal work functions and the electron affinity and ionization potential of the polymer. After contact there is a built-in electric field in the structure due to the different Schottky energy barriers of the asymmetric metal contacts. Capacitance-voltage measurements demonstrate that the metal/polymer/metal structures are fully depleted and therefore the electric field is constant throughout the bulk of the structure [31, 35]. The built-in potential, Vhh i.e. the product of the constant built-in electric field and the layer thickness may be written...
The atomization energy, electron affinity and ionization potential have been calculated for 1//-azepine. and a difference in energy between the boat and chair forms of 64.8 kJ mol -1 deduced.98 The calculated dipole moment for l//-azepine is 4.67 D.98 Hiickel-London theory has been applied to calculate the ring-current octopole hypersusceptibilities of l//-azepine."... [Pg.116]

Basically, the first approach to correlate the polyimide chain organization to the monomer structure was to take into consideration the electron affinity of the anhydride and the ionization potential of the diamine,10 as shown in Fig. 5.3. The strongest interactions between the polymeric chain are expected when the polyimide is prepared with the dianhydride having the highest electron affinity and die diamine with the lowest ionization potential. The strongest interchain interaction leads to high Tg and low solubility. [Pg.274]

In nitrobenzene the nitro group has a large electron affinity, and accordingly draws electrons away from the ring. The resonance effect works in the same direction, and, as a result, all positions have a deficiency of electrons. The meta positions are least affected, and the substitution takes place there with difficulty. In aniline, the inductive effect and the resonance effect oppose each other, but the latter wins out, and very easy o-p substitution takes place. [Pg.195]

Figure 9. Determination of the first electron affinity, and the first and higher ionization potentials of formyl radical from the SCF orbital energies and electronic repulsion integrals, and K,j (cf. eqs. (90), (92), and (93)). The experimental value (112), 9.88 eV, for the first ionization potential corresponds to the theoretical value I . All entries are given in eV. With A and I a lower index stands for MO the upper one indicates the state multiplicity after ionization. Figure 9. Determination of the first electron affinity, and the first and higher ionization potentials of formyl radical from the SCF orbital energies and electronic repulsion integrals, and K,j (cf. eqs. (90), (92), and (93)). The experimental value (112), 9.88 eV, for the first ionization potential corresponds to the theoretical value I . All entries are given in eV. With A and I a lower index stands for MO the upper one indicates the state multiplicity after ionization.
Brus, L. E. (1983). A simple model for ionization potential, electron affinity and aqueous redox potentials of small semiconductor crystallites. /. Chem. Phys., 79, 5566-5571. [Pg.181]

Although electron affinity values show only one clear trend, there is a recognizable pattern in the values that are positive. When the electron that is added must occupy a new orbital, the resulting anion is unstable. Thus, all the elements of Group 2 have positive electron affinities, because their valence S orbitals are filled. Similarly, all the noble gases have positive electron affinities, because their valence a p orbitals are filled. Elements with half-filled orbitals also have lower electron affinities than their neighbors. As examples, N (half-filled 2 p orbital set) has a positive electron affinity, and so does Mn (half-filled 3 d orbital set). [Pg.541]

Hyun et al. [345] prepared PbS Q-dots in a suspension and tethered them to Ti02 nanoparticles with a bifunctional thiol-carboxyl linker molecule. Strong size dependence due to quantum confinement was inferred from cyclic voltammetry measurements, for the electron affinity and ionization potential of the attached Q-dots. On the basis of the measured energy levels, the authors claimed that pho-toexcited electrons should transfer efficiently from PbS into T1O2 only for dot diameters below 4.3 nm. Continuous-wave fluorescence spectra and fluorescence transients of the PbS/Ti02 assembly were consistent with electron transfer from small Q-dots. The measured charge transfer time was surprisingly slow ( 100 ns). Implications of this fact for future photovoltaics were discussed, while initial results from as-fabricated sensitized solar cells were presented. [Pg.290]

Bms LE (1983) A simple model for the ionization potential, electron affinity, and aqueous redox potentials of smaU semiconductor crystaUites. J Chem Phys 79 5566-5571... [Pg.302]

Much of what is knotm about the structure response of the ECD is based on empirical observations. Clearly, the ability to correlate the response of the detector to fundamental molecular parameters would be useful. Chen and Wentworth have shorn that the information required for this purpose is the electron affinity of the molecule, the rate constant for the electron attachment reaction and its activation energy, and the rate constant for the, ionic recombination reaction [117,141,142]. in general, the direct calculation of detector response factors have rarely Jseen carried j out, since the electron affinities and rate constants for most compounds of interest are unknown. [Pg.144]

The reaction of eh with H2 is very slow ( 105 M-1s-1), due to a positive free energy barrier. Nitrogen has negative electron affinity it is unreactive toward eh. 02 has a high electron affinity, and it reacts with eh with a diffusion-controlled rate (see Table 6.6). The immediate product of the reaction, 02- or its acidic form HOz, reacts further with itself, giving H202and Or... [Pg.183]

As we have seen, several atomic properties are important when considering the energies associated with crystal formation. Ionization potentials and heats of sublimation for the metals, electron affinities, and dissociation energies for the nonmetals, and heats of formation of alkali halides are shown in Tables 7.1 and 7.2. [Pg.213]

Table 7.2 Electron Affinities and Dissociation Energies for Halogens. ... Table 7.2 Electron Affinities and Dissociation Energies for Halogens. ...

See other pages where Electron affinity and is mentioned: [Pg.813]    [Pg.2394]    [Pg.2395]    [Pg.111]    [Pg.79]    [Pg.11]    [Pg.150]    [Pg.535]    [Pg.887]    [Pg.18]    [Pg.1218]    [Pg.1219]    [Pg.11]    [Pg.324]    [Pg.235]    [Pg.42]    [Pg.181]    [Pg.703]    [Pg.703]    [Pg.255]    [Pg.566]    [Pg.105]    [Pg.710]    [Pg.99]    [Pg.299]    [Pg.237]   


SEARCH



Anomalous ionization energies and electron affinities

Atoms electron affinity and

Electron Affinities and Charge Transfer Complex Energies

Electron Affinities and Half-Wave Reduction Potentials

Electron Affinities and Ionization Potentials of Aromatic Hydrocarbons

Electron Affinities and Metallic Character

Electron Affinities and Periodic Trends of Homonuclear Diatomic Molecules

Electron Affinities from Reduction Potentials and CURES-EC

Electron Affinities of AT AU and GC

Electron Affinities of Fluoro- and Chlorobenzenes

Electron Affinities of Organic Nitro Compounds the ECD and TCT

Electron Affinities of Purines and Pyrimidines

Electron affinity

Electron affinity and LUMO

Electron affinity, and electronegativity

Electron affinity, of molecules and

Electron affinity, of molecules and radicals

Electronic affinity

Electrons electron affinity

Energy electron affinity and

Excitation energy, ionization potential, and electron affinity (RHF approach)

Gas Phase Acidities and Electron Affinities of the Amino Acids

Ionic Binding Energies, Ionization Potentials, and Electron Affinity

Ionisation Potentials, Electron Affinities and Koopmans Theorem

Ionization potential and electron affinity

Ionization potential and electron affinity (Koopmans rule)

Ionization potentials, electron affinities and stabilities of oxidation states

Miscellaneous Properties - UV Spectra, Ionization Energies, and Electron Affinities

Naphthalene electron affinity and ionization potential

Negative-Ion Mass Spectra and Electron Affinities

Potential and Electron Affinity of Buckminsterfullerene

Potentials and Electron Affinities

Proton and Electron Affinities

Selection, Assignment, and Correlations of Atomic Electron Affinities

© 2024 chempedia.info