Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron affinity, of molecules and radicals

The absorption, emission, photodetachment, and photoelectron spectroscopy experiments are capable of providing accurate and precise values for the electron affinities of atoms. The best precision is about 1 part per million, more than precise enough for chemical purposes. The state of the ion must be identified and some excited-state electron affinities of atoms have been reported. The photoelectron spectroscopy and photodetachment procedure can give the accurate and precise electron affinities of molecules and radicals when the state of the anion is assigned. [Pg.115]

Table 4.4 Electron Affinities of Elements, Molecules, and Radicals... Table 4.4 Electron Affinities of Elements, Molecules, and Radicals...
TABLE 4.4 Electron Affinities of Atoms, Molecules, and Radicals Electron affinity of an atom (molecule or radical) is defined as the energy difference between the lowest (ground) state of the neutral and the lowest state of the corresponding negative ion in the gas phase. A(g) + e = A-(g) Data are limited to those negative ions which, by virtue of their positive electron affinity, are stable. Uncertainty in the final data figures is given in parentheses. Calculated values are enclosed in brackets. ... [Pg.299]

Several portions of Section 4, Properties of Atoms, Radicals, and Bonds, have been significantly enlarged. For example, the entries under Ionization Energy of Molecular and Radical Species now number 740 and have an additional column with the enthalpy of formation of the ions. Likewise, the table on Electron Affinities of the Elements, Molecules, and Radicals now contains about 225 entries. The Table of Nuclides has material on additional radionuclides, their radiations, and the neutron capture cross sections. [Pg.1283]

The polarographic half-wave reduction potential of 4-nitroisothiazole is -0.45 V (pH 7, vs. saturated calomel electrode). This potential is related to the electron affinity of the molecule and it provides a measure of the energy of the LUMO. Pulse radiolysis and ESR studies have been carried out on the radical anions arising from one-electron reduction of 4-nitroisothiazole and other nitro-heterocycles (76MI41704). [Pg.134]

For cationic zeolites Richardson (79) has demonstrated that the radical concentration is a function of the electron affinity of the exchangeable cation and the ionization potential of the hydrocarbon, provided the size of the molecule does not prevent entrance into the zeolite. In a study made on mixed cationic zeolites, such as MgCuY, Richardson used the ability of zeolites to form radicals as a measure of the polarizing effect of one metal cation upon another. He subsequently developed a theory for the catalytic activity of these materials based upon this polarizing ability of various cations. It should be pointed out that infrared and ESR evidence indicate that this same polarizing ability is effective in hydrolyzing water to form acidic sites in cationic zeolites (80, 81). [Pg.302]

Amines possess a pair of p-electrons on the nitrogen atom. The nitrogen atom has a low electron affinity in comparison with oxygen. Therefore, amine can be the electron donor reactant in a charge-transfer complex (CTC) in association with oxygen-containing molecules and radicals. It will be shown that the formation of CTC complexes of amines with peroxyl radicals is important in the low-temperature oxidation of amines. [Pg.357]

Electron affinity of an atom (molecule or radical) is defined as the energy difference between the lowest (ground) state of the neutral and the lowest state of the corresponding negative ion in the gas phase. [Pg.568]

For anion-radicals, air (i.e., oxygen, carbon dioxide, and water [moisture]), on the whole, is an active component of the medium and so it should be removed before conducting reactions. Understandably, air inhibits anion-radical reactions The anion-radicals primarily formed are consumed at the expense of oxidation, carboxylation, and protonation. Certainly, oxidation can take place only if the acceptor organic molecule possesses a lower affinity for an electron than oxygen does or if one-electron oxidation of the anion-radical by oxygen proceeds more rapidly than the anion-radical decomposition into a radical and an anion (RX R + X ). [Pg.291]

Electron transfer from polycyclic aromatic radical anions in polar solvents can also initiate propagation.120 168 169173 One of the early and best understood systems is naphthalene-sodium, a green solution of stable, solvated naphthalene radical anion.176 177 The electron transfer from the radical anion to the monomer yields a new radical anion [Eq. (13.33)]. The dominant reaction of the latter is its head-to-head dimerization to the stabile dimeric dicarbanion [Eq. (13.34)], which is the driving force for the electron transfer even when electron affinity of the monomer is less than that of the polycyclic molecule. Propagation proceeds at both ends of the chain ... [Pg.741]

Reaction 4 is favored by the strong electron affinity of nitroethylene (30). The carbanion may be formed by ion-molecule reaction between the anion radicals and the nitroethlene molecules (reaction 5), to which the latter add successively, and polymerization proceeds by anionic propagation (reaction 6)... [Pg.412]


See other pages where Electron affinity, of molecules and radicals is mentioned: [Pg.39]    [Pg.121]    [Pg.140]    [Pg.412]    [Pg.39]    [Pg.121]    [Pg.140]    [Pg.412]    [Pg.223]    [Pg.310]    [Pg.499]    [Pg.269]    [Pg.66]    [Pg.99]    [Pg.101]    [Pg.174]    [Pg.1190]    [Pg.6]    [Pg.16]    [Pg.208]    [Pg.149]    [Pg.104]    [Pg.174]    [Pg.117]    [Pg.121]    [Pg.43]    [Pg.569]    [Pg.158]    [Pg.247]   
See also in sourсe #XX -- [ Pg.177 ]




SEARCH



Electron affinities of molecules

Electron affinities of radicals

Electron affinity

Electron affinity, and

Electron radicals

Electronic affinity

Electronic of molecules

Electronic of radicals

Electrons electron affinity

Electrons radicals and

Molecule electronic

Molecules electron affinities

Radical molecules

Radicals electron affinity

© 2024 chempedia.info