Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrolytic conductors reduction

When electricity passes through a circuit consisting of both types of electrical conductors, a chemical reaction always occurs at their interface. These reactions are electrochemical. When electrons flow from the electrolytic conductor, oxidation occur at the interface while reduction occurs if electrons flow in the opposite direction. These electronic-electrolytic interfaces are referred to us electrodes, interfaces where oxidation occurs are known as anodes and those ai which reduction occurs, as cathodes. An anode is also defined as that electrode by which "conventional" current enters an electrolytic solution, a cathode as that electrode by which "conventional" current leaves. Positive ions, for example, ions of hydrogen and the metals, are called cations while negative ions, for example, acid radicals and ions of nonmctals. are called anions. [Pg.542]

Nevertheless there are some reactions which never change. Thus NO reduction on noble metals, a very important catalytic reaction, is in the vast majority of cases electrophilic, regardless of the type of solid electrolyte used (YSZ or P"-A1203). And practically all oxidations are electrophobic under fuel lean conditions, regardless of the type of solid electrolyte used (YSZ, p"-Al203, proton conductors, even alkaline aqueous solutions). [Pg.182]

Analytical methods based upon oxidation/reduction reactions include oxidation/reduction titrimetry, potentiometry, coulometry, electrogravimetry and voltammetry. Faradaic oxidation/reduction equilibria are conveniently studied by measuring the potentials of electrochemical cells in which the two half-reactions making up the equilibrium are participants. Electrochemical cells, which are galvanic or electrolytic, reversible or irreversible, consist of two conductors called electrodes, each of which is immersed in an electrolyte solution. In most of the cells, the two electrodes are different and must be separated (by a salt bridge) to avoid direct reaction between the reactants. [Pg.666]

Significant advances have been made in this decade in electrochemical H2 separation, mostly through the use of solid polymer electrolytes. Since the overpotentials for H2 reduction and oxidation are extremely low at properly constructed gas diffusion electrodes, very high current densities are achievable at low total polarization. Sedlak [13] plated thin layer of Pt directly on Nafion proton conductors 0.1-0.2cm in thickness, and obtained nearly 1200 mA/cm2 at less than 0.3 V. The... [Pg.208]

Fig. 3. Oxygen transport in solids. 02 is dissociated and ionized at the reduction interface to give O2 ions, which are transferred across the solid to the oxidation interface, at which they lose the electrons to return back to 02 molecules that are released to the stream, (a) In the solid electrolyte cell based on a classical solid electrolyte, the ionic oxygen transport requires electrodes and external circuitry to transfer the electrons from the oxidation interface to the reduction interface (b) in the mixed conducting oxide membrane, the ionic oxygen transport does not require electrodes and external circuitry to transfer the electrons to the reduction interface from the oxidation interface, because the mixed conductor oxide provides high conductivities for both oxygen ions and electrons. Fig. 3. Oxygen transport in solids. 02 is dissociated and ionized at the reduction interface to give O2 ions, which are transferred across the solid to the oxidation interface, at which they lose the electrons to return back to 02 molecules that are released to the stream, (a) In the solid electrolyte cell based on a classical solid electrolyte, the ionic oxygen transport requires electrodes and external circuitry to transfer the electrons from the oxidation interface to the reduction interface (b) in the mixed conducting oxide membrane, the ionic oxygen transport does not require electrodes and external circuitry to transfer the electrons to the reduction interface from the oxidation interface, because the mixed conductor oxide provides high conductivities for both oxygen ions and electrons.
Electroanalytical techniques are an extension of classical oxidation-reduction chemistry, and indeed oxidation and reduction processes occur at the surface of or within the two electrodes, oxidation at one and reduction at the other. Electrons are consumed by the reduction process at one electrode and generated by the oxidation process at the other. The electrode at which oxidation occurs is termed the anode. The electrode at which reduction occurs is termed the cathode. The complete system, with the anode connected to the cathode via an external conductor, is often called a cell. The individual oxidation and reduction reactions are called half-reactions. The individual electrodes with their half-reactions are called half-cells. As we shall see in this chapter, the half-cells are often in separate containers (mostly to prevent contamination) and are themselves often referred to as electrodes because they are housed in portable glass or plastic tubes. In any case, there must be contact between the half-cells to facilitate ionic diffusion. This contact is called the salt bridge and may take the form of an inverted U-shaped tube filled with an electrolyte solution, as shown in Figure 14.2, or, in most cases, a small fibrous plug at the tip of the portable unit, as we will see later in this chapter. [Pg.393]

Electrolyte solvents decompose reductively on the carbonaceous anode, and the decomposition product forms a protective film. When the surface of the anode is covered, the film prevents further decomposition of the electrolyte components. This film is an ionic conductor but an electronic insulator. [Pg.66]

Figure 28. Svensson s macrohomogeneous model for the i— 1/characteristics of a porous mixed-conducting electrode, (a) The reduction mechanism assuming that both surface and bulk diffusion are active and that direct exchange of oxygen vacancies between the mixed conductor and the electrolyte may occur, (b) Tafel plot of the predicted steady-state i— V characteristics as a function of the bulk oxygen vacancy diffusion coefficient. (Reprinted with permission from ref 186. Copyright 1998 Electrochemical Society, Inc.)... Figure 28. Svensson s macrohomogeneous model for the i— 1/characteristics of a porous mixed-conducting electrode, (a) The reduction mechanism assuming that both surface and bulk diffusion are active and that direct exchange of oxygen vacancies between the mixed conductor and the electrolyte may occur, (b) Tafel plot of the predicted steady-state i— V characteristics as a function of the bulk oxygen vacancy diffusion coefficient. (Reprinted with permission from ref 186. Copyright 1998 Electrochemical Society, Inc.)...
Role of the bulk transport path. In section 3 we saw that for Pt the dissociation of oxygen and transport of reactive intermediates to the electrode/ electrolyte interface is confined to the material surface. With mixed conductors, it is possible for oxygen reduced at the surface to be transported through the bulk of the material to the electrode/ electrolyte interface. If bulk transport is facile, this path may dominate, extending both the accessible surface for O2 reduction as well as broadening the active charge-transfer area from the TPB to include the entire solid—solid contact area. [Pg.576]

Fig. 26. Diagram of oxygen reduction in solid oxide electrolyte cell with (a) a pure electronic conductor, (b) a mixed (electronic and ionic) conductor. From ref. [76]. Fig. 26. Diagram of oxygen reduction in solid oxide electrolyte cell with (a) a pure electronic conductor, (b) a mixed (electronic and ionic) conductor. From ref. [76].
Another way to decrease the anodic overpotential is to intercalate a mixed conductor between the yttria stabilized zirconia electrolyte and the metallic anode. Such a combination enlarges the reaction area which theoretically lowers the anodic overpotential. Tedmon et al. [93] pointed out a significant decrease of polarization when ceria-based solid solutions like (Ce02)o.6 (LaO, 5)04 are used as anode materials for SOFCs. This effect is generally attributed to the mixed conductivity resulting from the partial reduction of Ce4+ to Ce3+ in the reducing fuel atmosphere. A similar behaviour was observed in water vapor electrolysis at high temperature when the surface zirconia electrolyte is doped with ceria [94, 95]. [Pg.115]

An SOFC cathode normally consists of a porous matrix cast onto an oxide ion-conducting electrolyte substrate (see Figure 8.24), where the cathode porosities are typically 25-40 vol% [66,123,137], Besides, the cathode must be an electron conductor and catalytically active for the oxygen reduction reaction. However, because it is not an oxygen conductor, it must be porous with an optimized three-phase interface at which the reduction reaction takes place [33],... [Pg.408]

Currently, the most widely applied electrolyte in PEFCs is Nation, manufactured by DuPont, Dow Chemical, Midland, MI, USA and other chemical companies. The Nation polymer electrolyte is a good proton conductor. Besides, it has very low electron conductivity, and is gas impermeable in order to provide the necessary spatial separation between the anode oxidation and the cathode reduction reactions. [Pg.412]


See other pages where Electrolytic conductors reduction is mentioned: [Pg.611]    [Pg.547]    [Pg.186]    [Pg.23]    [Pg.186]    [Pg.145]    [Pg.23]    [Pg.194]    [Pg.360]    [Pg.423]    [Pg.427]    [Pg.518]    [Pg.331]    [Pg.513]    [Pg.594]    [Pg.328]    [Pg.366]    [Pg.92]    [Pg.569]    [Pg.570]    [Pg.169]    [Pg.257]    [Pg.271]    [Pg.65]    [Pg.87]    [Pg.538]    [Pg.562]    [Pg.100]    [Pg.111]    [Pg.113]    [Pg.256]    [Pg.137]    [Pg.6]    [Pg.17]    [Pg.31]    [Pg.1057]    [Pg.157]    [Pg.564]   
See also in sourсe #XX -- [ Pg.504 ]




SEARCH



Electrolyte Reduction

Electrolytic conductors

Reduction electrolytic

Reduction electrolytically

© 2024 chempedia.info