Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrodes, oxidation-reduction applications

The titrations so far discussed in this chapter have been concerned with the use of a reference electrode (usually S.C.E.), in conjunction with a polarised electrode (dropping mercury electrode or rotating platinum micro-electrode). Titrations may also be performed in a uniformly stirred solution by using two small but similar platinum electrodes to which a small e.m.f. (1-100 millivolts) is applied the end point is usually shown by either the disappearance or the appearance of a current flowing between the two electrodes. For the method to be applicable the only requirement is that a reversible oxidation-reduction system be present either before or after the end point. [Pg.635]

Polarisation titrations are often referred to as amper-ometric or biamperometric titrations. It is necessary that one of the substances involved in the titration reaction be oxidisable or reducible at the working electrode surface. In general, the polarisation titration method is applicable to oxidation-reduction, precipitation and complex-ation titrations. Relatively few applications involving acid/base titration are found. Amperometric titrations can be applied in the determination of analyte solutions as low as ICE5 M to 10-6 M in concentration. [Pg.671]

Some other uses of silver metal include its applications as electrodes, catalysts, mirrors, and dental amalgam. Silver is used as a catalyst in oxidation-reductions involving conversions of alcohol to aldehydes, ethylene to ethylene oxide, and ethylene glycol to glyoxal. [Pg.833]

Since natural waters are generally in a dynamic rather than an equilibrium condition, even the concept of a single oxidation-reduction potential characteristic of the aqueous system cannot be maintained. At best, measurement can reveal an Eh value applicable to a particular system or systems in partial chemical equilibrium and then only if the systems are electrochemically reversible at the electrode surface at a rate that is rapid compared with the electron drain or supply by way of the measuring electrode. Electrochemical reversibility can be characterized... [Pg.285]

The potential of each channel may be composed of two potentials. One is an oxidation-reduction potential generating at the boundary surface between the Ag electrode and the lipid membrane. The other is a Donnan potential at the boundary between the lipid membrane and the aqueous medium or more generally a Gouy-Chapman electrical double-layer potential formed in the aqueous medium [24]. Figure 7 shows a potential profile near the lipid membrane. The oxidation-reduction potential would not be affected by the outer solution in short time, because the lipid membrane had low permeability for water. Then the measured potential change by application of the taste solution is mainly due to the change in the surface electrical potential. [Pg.383]

In cyclic voltammetry, the potential applied to the working electrode is varied linearly (Fig. 2.1) between potentials Ex and E2, E2 being a potential more positive (for oxidation) or negative (for reduction) than the peak maximum observed for the oxidation/reduction reaction concerned. At E2, the voltage scan is reversed back to E3 or to another end potential value, E3. The application of this type of potential ramp can be done in a number of ways, varying the starting potential Eu the reverse potential E2, the end potential E3 and the scan rate. The latter is the rate that is applied to vary the potential as a function of time, commonly represented in Vs 1 or mVs"1. [Pg.43]

Twenty years ago the main applications of electrochemistry were trace-metal analysis (polarography and anodic stripping voltammetry) and selective-ion assay (pH, pNa, pK via potentiometry). A secondary focus was the use of voltammetry to characterize transition-metal coordination complexes (metal-ligand stoichiometry, stability constants, and oxidation-reduction thermodynamics). With the commercial development of (1) low-cost, reliable poten-tiostats (2) pure, inert glassy-carbon electrodes and (3) ultrapure, dry aptotic solvents, molecular characterization via electrochemical methodologies has become accessible to nonspecialists (analogous to carbon-13 NMR and GC/MS). [Pg.517]

The selection of the proper working electrode for a given application has been described (8). In general, carbon electrodes are used for oxidation and mercury electrodes for reductions. [Pg.58]

Electrometric Titration Precipitation Reactions.—One of the most important practical applications of electrode potentials is to the determination of the end-points of various typos of titration the subject will be treated here from the standpoint of precipitation reactions, while neutralization and oxidation-reduction processes are described more conveniently in later chapters. [Pg.256]

There is nothing in the foregoing discussion that restricts it to reactions at the cathode or to ions it holds, in fact, for any electrode process, either anodic, i.e., oxidation, or cathodic, i.e., reduction, using the terms oxidation and reduction in their most general sense, in which the concentration of the reactant is decreased by the electrode process, provided the potential-determining equilibrium is attained rapidly. The fundamental equation (10) is applicable, for example, to cases of reversible oxidation of ions, e.g., ferrous to ferric, ferrocyanide to ferricyanide, iodide to iodine, as well as to their reduction, and also to the oxidation and reduction of non-ionized substances, such as hydroquinone and qui-none, respectively, that give definite oxidation-reduction potentials. [Pg.450]

Electrodialysis can be performed with two main cell types multi-membrane cells for dilution-concentration and water dissociation applications, and electrolysis (or electro-electrodialysis [EED]) cells for oxidoreduction reactions. In multimembrane cells, only the membrane transport phenomena intervene, while electrochemical reactions occurring at the electrodes do not interact with the separation process the electrodes are simple electrical terminals immersed in electrolytes allowing the current transfer. The electrolysis cell operates with only one membrane that separates two solutions circulating in each electrode compartment. This application is based on electrode redox reactions, which are electrolysis specific properties. The anode induces oxidations, and reductions occur at the cathode [4]. [Pg.582]

The standard electrode potential for an oxidation-reduction process is often called the standard redox potential of the pair of ions involved. A table of redox potentials finds immediate application in inorganic chemistry. [Pg.183]

Cyclic voltammetry (CV) is an important and widely used electroanalytical technique. Although CV is infrequently used for quantitative analysis, it finds wide applicability in the study of oxidation/reduction reactions, the detection of reaction intermediates, and the observation of follow-up reactions of products formed at electrodes. In CV, the applied potential is swept in first one direction and then the other while the cunent is measured. A CV experiment may use one full cycle, a partial cycle, or several cycles. [Pg.694]

Chapter 18 Introduction to Electrochemistry 490 Chapter 19 Applications of Standard Electrode Potentials 523 Chapter 20 Applications of Oxidation/Reduction Titrations 560 Chapter 21 Potentiometry 588... [Pg.1162]

We learn much about chemical reactions from the study of electrochemistry. The amount of electrical energy consumed or produced can be measured quite accurately. All electrochemical reactions involve the transfer of electrons and are therefore oxidation-reduction reactions. The sites of oxidation and reduction are separated physically so that oxidation occurs at one location, and reduction occurs at the other. Electrochemical processes require some method of introducing a stream of electrons into a reacting chemical system and some means of withdrawing electrons. In most applications the reacting system is contained in a cell, and an electric current enters or exits by electrodes. [Pg.849]

Application of the foregoing relations to the study of adsorption at electrode surfaces requires an understanding of the electrochemical processes at electrode-solution interfaces. Consider an electrode in contact with a solution containing electroactive species along with supporting electrolytes. Two important processes occur at the electrode surface a faradaic process in which electrons are transferred across the electrodesolution interface (oxidation-reduction reaction). As a result of these reactions current flows through the medium. Adsorption-desorption is... [Pg.160]


See other pages where Electrodes, oxidation-reduction applications is mentioned: [Pg.64]    [Pg.818]    [Pg.375]    [Pg.69]    [Pg.262]    [Pg.530]    [Pg.117]    [Pg.134]    [Pg.594]    [Pg.494]    [Pg.587]    [Pg.18]    [Pg.122]    [Pg.226]    [Pg.186]    [Pg.401]    [Pg.621]    [Pg.303]    [Pg.191]    [Pg.156]    [Pg.328]    [Pg.33]    [Pg.14]    [Pg.178]    [Pg.818]    [Pg.351]    [Pg.3]    [Pg.707]    [Pg.474]    [Pg.1587]    [Pg.72]   


SEARCH



Application oxidation

Application oxide

Electrodes applications

Oxidation electrode

Oxidation-reduction electrode,

Oxidized, applications

Reduction applications

© 2024 chempedia.info