Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrodeposition molten salt

In this process, uranium metal is electrodeposited at the cathode, while plutonium and other transuranium elements remain in the molten salt as trichlorides. Plutonium is reduced in a second step at a metallic cathode to produce Cd—Pu intermetallics. The refined plutonium and uranium metals can then be refabricated into metallic fuel (137). [Pg.201]

The early history of ionic liquid research was dominated by their application as electrochemical solvents. One of the first recognized uses of ionic liquids was as a solvent system for the room-temperature electrodeposition of aluminium [1]. In addition, much of the initial development of ionic liquids was focused on their use as electrolytes for battery and capacitor applications. Electrochemical studies in the ionic liquids have until recently been dominated by work in the room-temperature haloaluminate molten salts. This work has been extensively reviewed [2-9]. Development of non-haloaluminate ionic liquids over the past ten years has resulted in an explosion of research in these systems. However, recent reviews have provided only a cursory look at the application of these new ionic liquids as electrochemical solvents [10, 11]. [Pg.103]

It was quite recently reported that La can be electrodeposited from chloroaluminate ionic liquids [25]. Whereas only AlLa alloys can be obtained from the pure liquid, the addition of excess LiCl and small quantities of thionyl chloride (SOCI2) to a LaCl3-sat-urated melt allows the deposition of elemental La, but the electrodissolution seems to be somewhat Idnetically hindered. This result could perhaps be interesting for coating purposes, as elemental La can normally only be deposited in high-temperature molten salts, which require much more difficult experimental or technical conditions. Furthermore, La and Ce electrodeposition would be important, as their oxides have interesting catalytic activity as, for instance, oxidation catalysts. A controlled deposition of thin metal layers followed by selective oxidation could perhaps produce cat-alytically active thin layers interesting for fuel cells or waste gas treatment. [Pg.300]

Pt electrodeposits may also be produced from molten salt electrolytes. Such a high-temperature process has the advantage that the deposits are diffusion bonded to the titanium substrate and thus have good adhesion, and, if necessary, thick deposits can be produced. However, they have the disadvantage that because of the complexity of the process there is a limitation on the size and shape of the object to be plated, and the resultant deposits are softer and less wear resistant than those from aqueous solutions... [Pg.166]

It has been shown that the electrodeposition of molybdenum chalcogenides from high-temperature molten salts can give large, well-defined crystals of these compounds. The preparation of M0S2 as well as WS2 by electrolytic reduction of fused salts was first reported by Weiss [145], who produced small hexagonal blue-gray platelets under drastic conditions of electrolysis. Schneemeyer and Cohen... [Pg.110]

It has been pointed out that metals residing below the position held by manganese (and, therefore, much below hydrogen) in the electrochemical series (Table 6.11) cannot be electrodeposited from aqueous solutions of their salts. These metals are called base metals or reactive metals and can be electrodeposited only from nonaqueous electrolytes such as solutions in organic solvents and molten salts. As with an aqueous electrolyte, there is a minimum voltage which is required to bring about the electrolysis of a molten salt. [Pg.694]

In the case of molten salts, the functional electrolytes are generally oxides or halides. As examples of the use of oxides, mention may be made of the electrowinning processes for aluminum, tantalum, molybdenum, tungsten, and some of the rare earth metals. The appropriate oxides, dissolved in halide melts, act as the sources of the respective metals intended to be deposited cathodically. Halides are used as functional electrolytes for almost all other metals. In principle, all halides can be used, but in practice only fluorides and chlorides are used. Bromides and iodides are thermally unstable and are relatively expensive. Fluorides are ideally suited because of their stability and low volatility, their drawbacks pertain to the difficulty in obtaining them in forms free from oxygenated ions, and to their poor solubility in water. It is a truism that aqueous solubility makes the post-electrolysis separation of the electrodeposit from the electrolyte easy because the electrolyte can be leached away. The drawback associated with fluorides due to their poor solubility can, to a large extent, be overcome by using double fluorides instead of simple fluorides. Chlorides are widely used in electrodeposition because they are readily available in a pure form and... [Pg.697]

The composition of the electrolyte is quite important in controlling the electrolytic deposition of the pertinent metal, the chemical interaction of the deposit with the electrolyte, and the electrical conductivity of the electrolyte. In the case of molten salts, the solvent cations and the solvent anions influence the electrodeposition process through the formation of complexes. The stability of these complexes determines the extent of the reversibility of the overall electroreduction process and, hence, the type of the deposit formed. By selecting a suitable mixture of solvent cations to produce a chemically stable solution with strong solute cation-anion interactions, it is possible to optimize the stability of the complexes so as to obtain the best deposition kinetics. In the case of refractory and reactive metals, the presence of a reasonably stable complex is necessary in order to yield a coherent deposition rather than a dendritic type of deposition. [Pg.699]

The electrolysis temperature affects the electrolyte conductivity, the overpotential, and the solubility of the electrodeposit in aqueous as well as in molten salt systems. The effect of temperature is particularly important in the latter case. The lower limit of the temperature of operation is set by the liquidus temperature of the bath and the solubility of the solute. Generally, the temperature chosen is at least 50 °C above the melting temperature of... [Pg.700]

Electrodeposition of Transition Metal-Aluminum Alloys from Chloroaluminate Molten Salts... [Pg.275]

Relatively little attention has been devoted to the direct electrodeposition of transition metal-aluminum alloys in spite of the fact that isothermal electrodeposition leads to coatings with very uniform composition and structure and that the deposition current gives a direct measure of the deposition rate. Unfortunately, neither aluminum nor its alloys can be electrodeposited from aqueous solutions because hydrogen is evolved before aluminum is plated. Thus, it is necessary to employ nonaqueous solvents (both molecular and ionic) for this purpose. Among the solvents that have been used successfully to electrodeposit aluminum and its transition metal alloys are the chloroaluminate molten salts, which consist of inorganic or organic chloride salts combined with anhydrous aluminum chloride. An introduction to the chemical, electrochemical, and physical properties of the most commonly used chloroaluminate melts is given below. [Pg.277]

In many ways, chloroaluminate molten salts are ideal solvents for the electrodeposition of transition metal-aluminum alloys because they constitute a reservoir of reducible aluminum-containing species, they are excellent solvents for many transition metal ions, and they exhibit good intrinsic ionic conductivity. In fact, the first organic salt-based chloroaluminate melt, a mixture of aluminum chloride and 1-ethylpyridinium bromide (EtPyBr), was formulated as a solvent for electroplating aluminum [55, 56] and subsequently used as a bath to electroform aluminum waveguides [57], Since these early articles, numerous reports have been published that describe the electrodeposition of aluminum from this and related chloroaluminate systems for examples, see Liao et al. [58] and articles cited therein. [Pg.285]


See other pages where Electrodeposition molten salt is mentioned: [Pg.175]    [Pg.294]    [Pg.295]    [Pg.297]    [Pg.299]    [Pg.299]    [Pg.300]    [Pg.303]    [Pg.305]    [Pg.105]    [Pg.695]    [Pg.700]    [Pg.701]    [Pg.707]    [Pg.708]    [Pg.285]    [Pg.287]    [Pg.296]    [Pg.307]    [Pg.307]   
See also in sourсe #XX -- [ Pg.217 ]




SEARCH



Electrodeposition

Electrodeposition of Uranium by Pulse Electrolysis in Molten Fluoride Salts

Electrodeposits

© 2024 chempedia.info