Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrode processes/reactions standard potentials

Therefore, criteria in the selection of an electrode reaction for mass-transfer studies are (1) sufficient difference between the standard electrode potential of the reaction that serves as a source or sink for mass transport and that of the succeeding reaction (e.g., hydrogen evolution following copper deposition in acidified solution), and (2) a sufficiently low surface overpotential and rate of increase of surface overpotential with current density, so that, as the current is increased, the potential will not reach the level required by the succeeding electrode process (e.g., H2 evolution) before the development of the limiting-current plateau is complete. [Pg.225]

The above experimental data (Figs. 1 and 2) allow us to estimate the possibility for taking place the oxygen reduction process on PANI catalyst. If the special procedure is not taken to withdraw oxygen out of solution, PANI electrode in 1 M HC1 usually demonstrates a potential of about 0.6 V (SHE). In compliance with the Fig. 1 the position of the reduction peak might be at 0. 28 V. From the data of the standard potentials for the following reaction ... [Pg.113]

Fig. 3 Potential energy profiles for the concerted and the stepwise mechanism in the case of a thermal reductive process. E is the electrode potential for an electrochemical reaction and the standard potential of the electron donor for a homogeneous reaction. For an oxidative process, change - into + and donor into acceptor. Fig. 3 Potential energy profiles for the concerted and the stepwise mechanism in the case of a thermal reductive process. E is the electrode potential for an electrochemical reaction and the standard potential of the electron donor for a homogeneous reaction. For an oxidative process, change - into + and donor into acceptor.
Electrochemistry is in many aspects directly comparable to the concepts known in heterogeneous catalysis. In electrochemistry, the main driving force for the electrochemical reaction is the difference between the electrode potential and the standard potential (E — E°), also called the overpotential. Large overpotentials, however, reduce the efficiency of the electrochemical process. Electrode optimization, therefore, aims to maximize the rate constant k, which is determined by the catalytic properties of the electrode surface, to maximize the surface area A, and, by minimization of transport losses, to result in maximum concentration of the reactants. [Pg.314]

None of the set-ups discussed so far provides stirring of the electrolyte for bubble removal or for enhancement of the reaction rates. A standard set-up developed to study kinetic electrode processes is the rotating disc electrode [11]. The electrode is a small flat disc set in a vertical axle. The hydrodynamic flow pattern at the disc depends on rotation speed and can be calculated. An additional ring electrode set at a different potential provides information about reaction products such as, for example, hydrogen. However, because this set-up is designed to study kinetic processes and is usually equipped with a platinum disc, it becomes inconvenient if silicon samples of different geometries have to be mounted. [Pg.21]

Standard potential of the second electron transfer more cathodic than that of the first electron transfer (AE0 negative). One can consider the case where the formal electrode potential of the second couple is more cathodic, by at least 180 mV, with respect to the first couple (which has, for example, E01 = 0.00 V). If kf is low (compared to the intervention times of cyclic voltammetry i.e. if k[< n F- v/R T), the response will be due to the first electron transfer process, without complications caused by the following chemical reaction. As increases, the second process will have increasing effect up to the limiting case in which kt >n-F-v/R-T. In this limiting case the voltammogram will display two forward peaks, but only the second electron transfer will exhibit a return peak. [Pg.89]

Here, cp = (E —E ) is a dimensionless potential and rs = 1 cm is an auxiliary constant. Recall that in units of cm s is heterogeneous standard rate constant typical for all electrode processes of dissolved redox couples (Sect. 2.2 to 2.4), whereas the standard rate constant ur in units of s is typical for surface electrode processes (Sect. 2.5). This results from the inherent nature of reaction (2.204) in which the reactant HgL(g) is present only immobilized on the electrode surface, whereas the product is dissolved in the solution. For these reasons the cathodic stripping reaction (2.204) is considered as an intermediate form between the electrode reaction of a dissolved redox couple and the genuine surface electrode reaction [135]. The same holds true for the cathodic stripping reaction of a second order (2.205). Using the standard rate constant in units of cms , the kinetic equation for reaction (2.205) has the following form ... [Pg.123]

In general, when a metal is immersed in a solution of (i.e., contairung) its own ions, some surface atoms in the metal lattice do become hydrated and dissolve into the solution. At the same time, ions from the solution are deposited on the electrode. The rate of these two opposing processes is controlled by the potential differences at the metal-solution interface. The specific potentials at which these two reaction rates are equal, called standard potentials, are usually given in the literature for solutions at 25°C (room temperature) and at an activity value of unity. [Pg.201]

A bare surface of silicon can only exist in fluoride containing solutions. In reality, in these media, the electrode is considered to be passive due to the coverage by Si— terminal bonds. Nevertheless, the interface Si/HF electrolyte constitutes a basic example for the study of electrochemical processes at the Si electrode. In this system, the silicon must be considered both as a charge carrier reservoir in cathodic reactions, and as an electrochemical reactant under anodic polarization. Moreover, one must keep in mind that, according to the standard potential of the element, both anodic and cathodic charge transfers are involved simultaneously (corrosion process) in a wide range of potentials. [Pg.314]

Passage of 1.0 mol of electrons (one faraday, 96,485 A s) will produce 1.0 mol of oxidation or reduction—in this case, 1.0 mol of Cl- converted to 0.5 mol of Cl2, and 1.0 mol of water reduced to 1.0 mol of OH- plus 0.5 mol of H2. Thermodynamically, the electrical potential required to do this is given by the difference in standard electrode potentials (Chapter 15 and Appendix D) for the anode and cathode processes, but there is also an additional voltage or overpotential that originates in kinetic barriers within these multistep gas-evolving electrode processes. The overpotential can be minimized by catalyzing the electrode reactions in the case of chlorine evolution, this can be done by coating the anode with ruthenium dioxide. [Pg.212]

More than at mercury, it makes a difference whether the electrode is inert or not. In the first case, the electrode reaction is of the type Fe3+/ Fe2+ etc. and the modelling of processes is the same as with mercury. However, if the electrode reaction is of the type Zn2+/Zn, e.g. at a gold electrode, at least the electrode surface will be modified by the deposited zinc, Frequently, it is observed that the first monolayer of the foreign metal is deposited at a potential substantially positive to its standard potential. This phenomenon is named underpotential deposition and bears some resemblance to an electrode reaction that involves adsorption of the reacting species (see Sect. 6). [Pg.282]

The most popular electroanalytical technique used at solid electrodes is Cyclic Voltammetry (CV). In this technique, the applied potential is linearly cycled between two potentials, one below the standard potential of the species of interest and one above it (Fig. 7.12). In one half of the cycle the oxidized form of the species is reduced in the other half, it is reoxidized to its original form. The resulting current-voltage relationship (cyclic voltammogram) has a characteristic shape that depends on the kinetics of the electrochemical process, on the coupled chemical reactions, and on diffusion. The one shown in Fig. 7.12 corresponds to the reversible reduction of a soluble redox couple taking place at an electrode modified with a thick porous layer (Hurrell and Abruna, 1988). The peak current ip is directly proportional to the concentration of the electroactive species C (mM), to the volume V (pL) of the accumulation layer, and to the sweep rate v (mVs 1). [Pg.221]

When dehydration occurs as a consecutive reaction, its effect on polarographic curves can be observed only, if the electrode process is reversible. In such cases, the consecutive reaction affects neither the wave-height nor the wave-shape, but causes a shift in the half-wave potentials. Such systems, apart from the oxidation of -aminophenol mentioned above, probably play a role in the oxidation of enediols, e.g. of ascorbic acid. It is assumed that the oxidation of ascorbic acid gives in a reversible step an unstable electroactive product, which is then transformed to electroinactive dehydroascorbic acid in a fast chemical reaction. Theoretical treatment predicted a dependence of the half-wave potential on drop-time, and this was confirmed, but the rate constant of the deactivation reaction cannot be determined from the shift of the half-wave potential, because the value of the true standard potential (at t — 0) is not accessible to measurement. [Pg.42]


See other pages where Electrode processes/reactions standard potentials is mentioned: [Pg.21]    [Pg.412]    [Pg.211]    [Pg.93]    [Pg.369]    [Pg.375]    [Pg.400]    [Pg.706]    [Pg.348]    [Pg.96]    [Pg.251]    [Pg.29]    [Pg.46]    [Pg.85]    [Pg.135]    [Pg.540]    [Pg.14]    [Pg.5]    [Pg.276]    [Pg.733]    [Pg.1057]    [Pg.94]    [Pg.130]    [Pg.685]    [Pg.238]    [Pg.7]    [Pg.339]    [Pg.384]    [Pg.152]    [Pg.237]    [Pg.29]    [Pg.46]    [Pg.85]   
See also in sourсe #XX -- [ Pg.18 ]




SEARCH



Electrode potentials reactions

Electrode process

Electrode processe

Electrode reactions

Electrode standard

Electrodes processing

Electrodes standardization

Potential standard

Potentials, standardization

Process standardization

Standard Process

Standard potentials electrode reactions

Standard reaction

Standardized Processes

© 2024 chempedia.info