Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrode molecular view

C19-0061. Draw a sketch that shows a molecular view of the charge transfer processes that take place at a silver-silver chloride electrode in contact with aqueous HCl, undergoing reduction ... [Pg.1419]

C19-0131. Draw a sketch of the cell in Problem. Include molecular views of the processes taking place at the electrodes. [Pg.1427]

The diagram that follows represents a molecular view of a process occurring at an electrode in a voltaic celL... [Pg.865]

Chen M, Burgess I, Lipkowski J (2009) Potential controlled surface aggregation of surfactants at electrode surfaces - a molecular view. Surf Sci 603 1878-1891... [Pg.463]

Electrically, the electrical double layer may be viewed as a capacitor with the charges separated by a distance of the order of molecular dimensions. The measured capacitance ranges from about two to several hundred microfarads per square centimeter depending on the stmcture of the double layer, the potential, and the composition of the electrode materials. Figure 4 illustrates the behavior of the capacitance and potential for a mercury electrode where the double layer capacitance is about 16 p.F/cm when cations occupy the OHP and about 38 p.F/cm when anions occupy the IHP. The behavior of other electrode materials is judged to be similar. [Pg.511]

The historical development of chemically electrodes is briefly outlined. Following recent trends, the manufacturing of modified electrodes is reviewed with emphasis on the more recent methods of electrochemical polymerization and on new ion exchanging materials. Surface derivatized electrodes are not treated in detail. The catalysis of electrochemical reactions is treated from the view of theory and of practical application. Promising experimental results are given in detail. Finally, recent advances of chemically modified electrodes in sensor techniques and in the construction of molecular electronics are given. [Pg.50]

Thermodynamics describes the behaviour of systems in terms of quantities and functions of state, but cannot express these quantities in terms of model concepts and assumptions on the structure of the system, inter-molecular forces, etc. This is also true of the activity coefficients thermodynamics defines these quantities and gives their dependence on the temperature, pressure and composition, but cannot interpret them from the point of view of intermolecular interactions. Every theoretical expression of the activity coefficients as a function of the composition of the solution is necessarily based on extrathermodynamic, mainly statistical concepts. This approach makes it possible to elaborate quantitatively the theory of individual activity coefficients. Their values are of paramount importance, for example, for operational definition of the pH and its potentiometric determination (Section 3.3.2), for potentiometric measurement with ion-selective electrodes (Section 6.3), in general for all the systems where liquid junctions appear (Section 2.5.3), etc. [Pg.39]

Figure 20. A representation of the technique used in the mechanically controllable break junction for recording the current through a single molecule, (a) The gold wire was coated with a SAM of the molecular wires (b) and then broken, under solution (c), via extension of the piezo element under the silicon surface (see Figure 19). Evaporation of the volatile components and slow movement of the piezo downward (see Figure 19) permits one molecule to bridge the gap (d) that is shown, in expanded view, in the insert. The insert shows a benzene-1,4-dithiolate molecule between proximal gold electrodes. The thiolate is normally FI-terminated after deposition end groups denoted as X can be either FI or Au, the Au potentially arising from a previous contact/retraction event. Figure 20. A representation of the technique used in the mechanically controllable break junction for recording the current through a single molecule, (a) The gold wire was coated with a SAM of the molecular wires (b) and then broken, under solution (c), via extension of the piezo element under the silicon surface (see Figure 19). Evaporation of the volatile components and slow movement of the piezo downward (see Figure 19) permits one molecule to bridge the gap (d) that is shown, in expanded view, in the insert. The insert shows a benzene-1,4-dithiolate molecule between proximal gold electrodes. The thiolate is normally FI-terminated after deposition end groups denoted as X can be either FI or Au, the Au potentially arising from a previous contact/retraction event.
Attaching the catalyst molecules to the electrode surface presents an obvious advantage for synthetic and sensor applications. Catalysis can then be viewed as a supported molecular catalysis. It is the object of the next section. A distinction is made between monolayer and multilayer coatings. In the former, only chemical catalysis may take place, whereas both types of catalysis are possible with multilayer coatings, thanks to their three-dimensional structure. Besides substrate transport in the bathing solution, the catalytic responses are then under the control of three main phenomena electron hopping conduction, substrate diffusion, and catalytic reaction. While several systems have been described in which electron transport and catalysis are carried out by the same redox centers, particularly interesting systems are those in which these two functions are completed by two different molecular systems. [Pg.252]

Rose and Benjamin (see also Halley and Hautman ) utilized molecular dynamic simulations to compute the free energy function for an electron transfer reaction, Fe (aq) + e Fe (aq) at an electrodesolution interface. In this treatment, Fe (aq) in water is considered to be fixed next to a metal electrode. In this tight-binding approximation, the electron transfer is viewed as a transition between two states, Y yand Pf. In Pj, the electron is at the Fermi level of the metal and the water is in equilibrium with the Fe ion. In Pf, the electron is localized on the ion, and the water is in equilibrium with the Fe" ions. The initial state Hamiltonian H, is expressed as... [Pg.89]

When the follow-up reaction becomes so fast that the thickness of the reaction layer comes close to molecular dimensions, the above analysis breaks down because the diffusion of RX- ceases to obey Pick s law. An extreme situation in this connection is when the reaction is so fast that RX- has no time to diffuse away from the electrode and collapses instead at the surface. The follow-up reaction should then be viewed as a surface reaction and the half-wave potential is given (Saveant, 1980b, 1983) by (55), where... [Pg.27]

While the structure of nonredox polymer and polyelectrolytes thin layers has received much attention in the past [116, 117], only recently has a molecular theory able to treat, from a molecular point of view, redox polyelectrolytes adsorbed on electrodes, been presented [118-120]. The formulation of the theory, its scope, advantages and limitations will be discussed in detail in Section 2.5.2, and therefore we will limit ourselves to show here some predictions that are relevant for the understanding of the structure of polyelectrolyte-modified electrodes. The theory was applied to study the particular system depicted in Figure 2.5, which consists of a single layer of PAH-Os adsorbed on a gold surface thiolated with negatively charged mercapto... [Pg.68]

It is also interesting to consider charge-transfer models developed primarily for metal surfaces. There are clear parallels to the metal oxide case in that there is an interaction between discrete molecular orbitals on one side, and electronic bands on the other side of the interface. The Newns-Anderson model [118] qualitatively accounts for the interactions between adsorbed atoms and metal surfaces. The model is based on resonance of adatom levels with a substrate band. In particular, the model considers an energy shift in the adatom level, as well as a broadening of that level. The width of the level is taken as a measure of the interaction strength with the substrate bands [118]. Also femtosecond electron dynamics have been studied at electrode interfaces, see e.g. [119]. It needs to be established, however, to what extent metal surface models are valid also for organic adsorbates on metal oxides in view of the differences between the metal an the metal oxide band structures. The significance of the band gap, as well as of surface states in it, must in any case be considered [102]. [Pg.236]


See other pages where Electrode molecular view is mentioned: [Pg.155]    [Pg.155]    [Pg.362]    [Pg.787]    [Pg.242]    [Pg.424]    [Pg.532]    [Pg.114]    [Pg.276]    [Pg.231]    [Pg.214]    [Pg.913]    [Pg.294]    [Pg.169]    [Pg.285]    [Pg.529]    [Pg.500]    [Pg.246]    [Pg.78]    [Pg.115]    [Pg.418]    [Pg.19]    [Pg.214]    [Pg.240]    [Pg.4]    [Pg.91]    [Pg.81]    [Pg.369]    [Pg.187]   
See also in sourсe #XX -- [ Pg.897 ]




SEARCH



Molecular view

© 2024 chempedia.info