Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrode carbon, 301 inert

CNT randomly dispersed composites Many soft and rigid composites of carbon nanotubes have been reported [17]. The first carbon-nanotube-modified electrode was made from a carbon-nanotube paste using bromoform as an organic binder (though other binders are currently used for the paste formation, i.e. mineral oil) [105]. In this first application, the electrochemistry of dopamine was proved and a reversible behavior was found to occur at low potentials with rates of electron transfer much faster than those observed for graphite electrodes. Carbon-nanotube paste electrodes share the advantages of the classical carbon paste electrode (CPE) such as the feasibility to incorporate different substances, low background current, chemical inertness and an easy renewal nature [106,107]. The added value with CNTs comes from the enhancement of the electron-transfer reactions due to the already discussed mechanisms. [Pg.138]

Carbonaceous materials are usually used in iron-chromium redox flow fuel cells as (inert) electrodes (carbon fiber cloth, felt, etc.). The solution for the positive half-cell usually contains a certain concentration of hydrochloric acid in addition to iron(III) and iron(II) chlorides. [Pg.219]

Carbon is a relatively inert element chemically and is used in its graphitic and pre-graphitic forms as a construction material under a variety of corrosive conditions. Modern uses include heat exchangers in chemical plants, consumable electrodes in a variety of metallurgical processes and the components of rocket motors and the moderators of gas- and litiuid-cooled nuclear reactors. The demand for carbon products at the present time is I0 t/year. [Pg.863]

The chemical composition of the SEI formed on carbonaceous anodes is, in general, similar to that formed on metallic lithium or inert electrodes. However some differences are expected as a result of the variety of chemical compositions and morphologies of carbon surfaces, each of which can affect the i() value for the various reduction reactions differently. Another factor, when dealing with graphite, is solvent co-intercalation. Assuming Li2C03 to be a major SEI building material, the thickness of the SEI was estimated to be about 45 A [711. [Pg.439]

Table 8 shows results obtained from the application of various bulk and surface analysis methods to lithium metal at rest or after cyclization experiments, as well as at inert and carbon electrodes after cathodic polarization. The analytical methods include elemental analysis, X-ray photoelectron spectroscopy (XPS or ESCA), energy-dispersive analysis of X-rays (X-ray mi-... [Pg.481]

S.2.2 Carbon Electrodes Solid electrodes based on carbon are currently in widespread use in electroanalysis, primarily because of their broad potential window, low background current, rich surface chemistry, low cost, chemical inertness, and suitability for various sensing and detection applications. In contrast, electron-transfer rates observed at carbon surfaces are often slower than those observed at metal electrodes. The electron-transfer reactivity is strongly affected by the origin... [Pg.113]

Last but not least, one should check the inertness of the auxiliary electrodes in single-pellet arrangements, both under open and closed circuit conditions and, also, via the closure of the carbon balance, the appearance of coke deposition. This is especially important in systems with a variety of products (e.g. selective oxidations), where the exact value of selectivity towards specific products is of key interest. This in turn points out the importance of the use of a good analytical system and of its careful calibration. [Pg.554]

Certain three-dimensional electrodes, also known as slurry or fluidized-bed electrodes, are sometimes used as well in order to have a strongly enhanced working surface area. Electrodes of this type consist of fine particles of the electrode material (metal, oxide, carbon, or other) kept in suspension in the electrolyte solution by intense mixing or gas bubbling. A certain potential difference is applied to the system between an inert feeder elecnode and an auxiliary electrode that are immersed into the suspension. By charge transfer, the particles of electrode material constantly hitting the feeder electrode acquire its potential (fully or at least in part), so that a desired electrochemical reaction may occur at their surface. In this reaction, the particles lose their charge but reacquire it in subsequent encounters with the feeder electrode. [Pg.342]

At the next level of abstraction are measurements performed at a thin film of fuel cell catalyst immobilized on the surface of an inert substrate, such as glassy carbon (GC) or gold (Fig. 15.2c). Essentially, three versions of this approach have been described in the fiterature. In the first case (a porous electrode ), an ink containing catalyst and Nafion ionomer is spread onto an inert nonporous substrate [Gloaguen et al., 1994 Gamez et al., 1996 Kabbabi et al., 1994]. In the second case (a thin-fihn electrode ), the ink does not contain Nafion , but the latter is... [Pg.520]

In view of its inertness Pt is mostly used, but it should be borne in mind that in the presence of strongly reducing agents such as Cr(II), Ti(IH) and V(IV) Pt can catalyse the reduction of H+ ions and then does not satisfy the aim of electrode inertness. Under certain conditions one can use electrodes of Pd, Au, graphite, conducting glass or glassy carbon. [Pg.45]

Since model compounds reveal well-defined cyclic voltammograms for the Cr(CNR)g and Ni(CNR)g complexes (21) the origin of the electroinactivity of the polymers is not obvious. A possible explanation (12) is that the ohmic resistance across the interface between the electrode and polymer, due to the absence of ions within the polymer, renders the potentially electroactive groups electrochemically inert, assuming the absence of an electronic conduction path. It is also important to consider that the nature of the electrode surface may influence the type of polymer film obtained. A recent observation which bears on these points is that when one starts with the chromium polymer in the [Cr(CN-[P])6] + state, an electroactive polymer film may be obtained on a glassy carbon electrode. This will constitute the subject of a future paper. [Pg.251]

Carbon electrodes are widely used in electrochemistry both in the laboratory and on the industrial scale. The latter includes production of aluminium, fluorine, and chlorine, organic electrosynthesis, electrochemical power sources, etc. Besides the use of graphite (carbons) as a virtually inert electode material, the electrochemical intercalation deserves special attention. This topic will be treated in the next paragraph. [Pg.326]


See other pages where Electrode carbon, 301 inert is mentioned: [Pg.682]    [Pg.692]    [Pg.615]    [Pg.77]    [Pg.371]    [Pg.138]    [Pg.143]    [Pg.264]    [Pg.119]    [Pg.766]    [Pg.557]    [Pg.5]    [Pg.277]    [Pg.581]    [Pg.215]    [Pg.215]    [Pg.193]    [Pg.510]    [Pg.342]    [Pg.24]    [Pg.176]    [Pg.137]    [Pg.149]    [Pg.911]    [Pg.114]    [Pg.635]    [Pg.96]    [Pg.609]    [Pg.194]    [Pg.219]    [Pg.372]    [Pg.373]    [Pg.666]    [Pg.200]    [Pg.304]    [Pg.103]    [Pg.69]    [Pg.40]   
See also in sourсe #XX -- [ Pg.301 ]




SEARCH



Carbon electrode

Carbonate electrode

Inert carbon

Inert electrodes

© 2024 chempedia.info