Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrode carbon-dispersed composite

Figure 1. Electrode potential curves obtained from the (intermittent) galvanostatic charge-discharge curves of the carbon-dispersed composite electrodes of (a) Lii. sNiOa, (b) Lii Co02, (c) Li6V20s, (d) Lii+6[Ti5/3Li /3]04, and (e) graphite. Reprinted from (1999), (2001), and (2001), with permission from Elsevier Science. Figure 1. Electrode potential curves obtained from the (intermittent) galvanostatic charge-discharge curves of the carbon-dispersed composite electrodes of (a) Lii. sNiOa, (b) Lii Co02, (c) Li6V20s, (d) Lii+6[Ti5/3Li /3]04, and (e) graphite. Reprinted from (1999), (2001), and (2001), with permission from Elsevier Science.
Let us begin with a brief description of electrode potential curves. The electrode potential curves of the carbon-dispersed composite electrodes of Li,.6Ni02 Li,.6C0O2,Li5V20j,Li, [Ti3,3Li, ]04. [Pg.261]

CNT randomly dispersed composites Many soft and rigid composites of carbon nanotubes have been reported [17]. The first carbon-nanotube-modified electrode was made from a carbon-nanotube paste using bromoform as an organic binder (though other binders are currently used for the paste formation, i.e. mineral oil) [105]. In this first application, the electrochemistry of dopamine was proved and a reversible behavior was found to occur at low potentials with rates of electron transfer much faster than those observed for graphite electrodes. Carbon-nanotube paste electrodes share the advantages of the classical carbon paste electrode (CPE) such as the feasibility to incorporate different substances, low background current, chemical inertness and an easy renewal nature [106,107]. The added value with CNTs comes from the enhancement of the electron-transfer reactions due to the already discussed mechanisms. [Pg.138]

Bessel and Rolison reported the electrochemical behavior of [Co(SALEN)]2"1" and Fe(bpy)3]2+ in zeolite Y.[1571 They prepared an electrode using the complex-zeolite composite and carbon powder, and tested the electrochemical behaviors of the electrode and the composite dispersed in a solution. It was found that the electrochemical behaviors of these two materials differ to a great extent. After several cycles, the former loses all the electrochemical signals, whereas the latter continuously shows the signals. They believed that the electrochemical signals arise from the complex attached onto the zeolite external surface (defects or external supercages), whereas the complex inside the zeolite channel does not participate in electron transfer of the electrochemical process. In fact, there has been dispute on whether the electrochemical signals arise from electron transfer in zeolite channels or from those complexes on the zeolite external surface. Both views can find experimental support.1158 1591... [Pg.641]

Microparticulate deposits of inorganic solids mechanically transferred to the surface of inert electrodes or dispersed in carbon paste or composite electrodes... [Pg.49]

Carbon-ceramic composite electrodes (CCEs) and the closely related metal-sihcate electrodes are comprised of carbon or metal dispersion in sol-gel derived silicates or Or-mocers. In this construction the silicate serves as a porous binder for the conductive dispersion. The conductive component is added as powders, nanoparticles, or nanotubes whose particle size ranges between sub-millimeter and a few nanometers. The initial intention was to provide improved conductivity by the interconnected conductive powder, but soon, other favorable attributes of the metal-sihcate hybrids were discovered, including improved catalytic reactivity, biological compatibility, and control of the thickness of the wetted section of the electrodes in aqueous electrolyte. Since the metal silicate and graphite silicate call for different preparation protocols they are addressed separately. [Pg.1529]

An environmentally friendly sensor was developed by fabricating a nickel-copper (NiCu) alloy electrode to determine the chemical oxygen demand. The NiCu alloy film was applied to modify the surface of a glassy carbon electrode which led to a very stable detecting element. The surface morphology of NiCu alloy was investigated by atomic force microscopy which confirmed its continuity and uniform thickness over the entire electrode. The chemical composition of the developed NiCu film was evaluated by energy-dispersive X-ray spectrometry which revealed 69 % presence of Ni in the alloy. [Pg.23]

Film-forming chemical reactions and the chemical composition of the film formed on lithium in nonaqueous aprotic liquid electrolytes are reviewed by Dominey [7], SEI formation on carbon and graphite anodes in liquid electrolytes has been reviewed by Dahn et al. [8], In addition to the evolution of new systems, new techniques have recently been adapted to the study of the electrode surface and the chemical and physical properties of the SEI. The most important of these are X-ray photoelectron spectroscopy (XPS), SEM, X-ray diffraction (XRD), Raman spectroscopy, scanning tunneling microscopy (STM), energy-dispersive X-ray spectroscopy (EDS), FTIR, NMR, EPR, calorimetry, DSC, TGA, use of quartz-crystal microbalance (QCMB) and atomic force microscopy (AFM). [Pg.420]

Gal-Or and Hoelscher (G5) have recently developed a fast and simple transient-response method for the measurement of concentration and volumetric mass-transfer coefficients in gas-liquid dispersions. The method involves the use of a transient response to a step change in the composition of the feed gas. The resulting change in the composition of the liquid phase of the dispersion is measured by means of a Clark electrode, which permits the rapid and accurate analysis of oxygen or carbon dioxide concentrations in a gas, in blood, or in any liquid mixture. [Pg.303]

In order to guarantee an efficient performance of the CNT-based electrochemical devices, attention has to be paid not only to CNT synthesis and purification but also to the way that the CNT electrode is built up. There have been many studies in the literature dealing with CNT dispersions either on conducting substrates or forming composites. In this subsection we will address the different carbon-nanotube deposition techniques and carbon-nanotube arrangements on different electrode surfaces. [Pg.135]

As COR and OER occur simultaneously in the cathode, their kinetics are particularly important in evaluating carbon-support corrosion. The kinetics of OER is material-specific, dependent on catalyst composition and electrode fabrication.35,37 -39 A number of OER kinetics studies were done on Pt metal electrodes.37-39 However, there is a lack of OER kinetics data on electrodes made of Pt nano-particles dispersed on carbon supports. Figure 2 shows the measured OER current density with respect to the overpotential defined by Eq. (6).35 The 02 concentration was measured at the exit of a 50-cm2 cell using a gas chromatograph (GC). The 02 evolution rate (= 02 concentration x cathode flow rate) was then converted to the OER current density, assuming 4e /02 molecule. Diluted H2 (10%) and a thicker membrane (50 p,m) were used in the measurement to minimize H2 crossover from anode to cathode, because H2 would react with 02 evolved at the cathode and incur inaccuracy in the measured OER current density. Figure 2 indicates that the OER... [Pg.50]


See other pages where Electrode carbon-dispersed composite is mentioned: [Pg.261]    [Pg.299]    [Pg.529]    [Pg.534]    [Pg.117]    [Pg.305]    [Pg.511]    [Pg.684]    [Pg.511]    [Pg.211]    [Pg.318]    [Pg.71]    [Pg.345]    [Pg.58]    [Pg.228]    [Pg.697]    [Pg.706]    [Pg.131]    [Pg.80]    [Pg.139]    [Pg.262]    [Pg.401]    [Pg.335]    [Pg.121]    [Pg.319]    [Pg.319]    [Pg.66]    [Pg.335]    [Pg.151]    [Pg.152]    [Pg.294]    [Pg.29]    [Pg.40]    [Pg.41]    [Pg.2328]    [Pg.139]    [Pg.140]    [Pg.154]    [Pg.305]   
See also in sourсe #XX -- [ Pg.261 ]

See also in sourсe #XX -- [ Pg.261 ]




SEARCH



Carbon composites

Carbon composition

Carbon dispersion

Carbon electrode

Carbonate electrode

Composite electrode

Dispersion composition

Electrode composition

© 2024 chempedia.info