Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemistry in Solution

It is clear that presence of oxygen annihilates the accumulation of electrons. Instead, however, fiillerene Ceo can react with the electrons accumulated on the semiconductor surface as reported by Vinodgopal et al. ° As reported by these authors, the electronic transfer between the Ti02 particles and Ceo takes place with a quantum efficiency of 24%. The reduction of Ceo leads to the radical formation C eo, with a characteristic peak centered at 1060 nm, see lower ctrrve of the spectra. Fig. 23. Indicating that, in our experimental conditions, the reaction can proceed, after the scheme shown on the bottom left. [Pg.289]


Aprotic polar solvents such as those listed in Table 8.1 are widely used in electrochemistry. In solutions with such solvents the alkali metals are stable and will not dissolve under hydrogen evolution (by discharge of the proton donors) as they do in water or other protic solvents. These solvents hnd use in new types of electrochemical power sources (batteries), with hthium electrodes having high energy density. [Pg.129]

In conventional electrochemistry in solution, quantitation of analytes can be obtained by using several techniques. Thus, exhaustive electrolysis provides an absolute quantitation of an electroactive component in the sample. Voltammetric measurements (linear potential scan, cyclic, pulse, and square-wave techniques) can be used for determination of analytes in solution via calibration because peak currents (and peak areas) are usually proportional to the analyte concentration under fixed electrochemical conditions. [Pg.95]

Toma and coworkers studied the electrochemistry in solution of [Ni-TRP] (5.18). The cyclic voltammograms corresponding to the structure (5.18) are shown in Figure 5.11. ... [Pg.226]

By recording simultaneously the electric current and the absorption spectrum of a thin film of conducting polymer, a wealth of information on the characteristics of material is obtained. The methods of spectroelectrochemistry in connection with conventional electrochemistry in solution have been known for a long time. The measurement can be carried out in different ways. [Pg.190]

The combination of electrochemistry and photochemistry is a fonn of dual-activation process. Evidence for a photochemical effect in addition to an electrochemical one is nonnally seen m the fonn of photocurrent, which is extra current that flows in the presence of light [, 89 and 90]. In photoelectrochemistry, light is absorbed into the electrode (typically a semiconductor) and this can induce changes in the electrode s conduction properties, thus altering its electrochemical activity. Alternatively, the light is absorbed in solution by electroactive molecules or their reduced/oxidized products inducing photochemical reactions or modifications of the electrode reaction. In the latter case electrochemical cells (RDE or chaimel-flow cells) are constmcted to allow irradiation of the electrode area with UV/VIS light to excite species involved in electrochemical processes and thus promote fiirther reactions. [Pg.1945]

Other Coordination Complexes. Because carbonate and bicarbonate are commonly found under environmental conditions in water, and because carbonate complexes Pu readily in most oxidation states, Pu carbonato complexes have been studied extensively. The reduction potentials vs the standard hydrogen electrode of Pu(VI)/(V) shifts from 0.916 to 0.33 V and the Pu(IV)/(III) potential shifts from 1.48 to -0.50 V in 1 Tf carbonate. These shifts indicate strong carbonate complexation. Electrochemistry, reaction kinetics, and spectroscopy of plutonium carbonates in solution have been reviewed (113). The solubiUty of Pu(IV) in aqueous carbonate solutions has been measured, and the stabiUty constants of hydroxycarbonato complexes have been calculated (Fig. 6b) (90). [Pg.200]

Freiman, L. 1. and Kolotyrkin, Ya. M., Pitting Corrosion of Aluminium in Solutions of Sodium Perchlorate and Perchloric Acid , Zashch. Melal, 2, 488 (1966) C.A., 65, 19674d Novakovskii, V. M. and Sorokina, A. N., Comparative Electrochemistry of Stress Corrosion and Pitting of Stainless Steels in Chloride Solutions , Zashch. Melal, 2, 416 (1966) C.A., 65, 18152g... [Pg.210]

If the film is nonconductive, the ion must diffuse to the electrode surface before it can be oxidized or reduced, or electrons must diffuse (hop) through the film by self-exchange, as in regular ionomer-modified electrodes.9 Cyclic voltammograms have the characteristic shape for diffusion control, and peak currents are proportional to the square root of the scan speed, as seen for species in solution. This is illustrated in Fig. 21 (A) for [Fe(CN)6]3 /4 in polypyrrole with a pyridinium substituent at the 1-position.243 This N-substituted polypyrrole does not become conductive until potentials significantly above the formal potential of the [Fe(CN)6]3"/4 couple. In contrast, a similar polymer with a pyridinium substituent at the 3-position is conductive at this potential. The polymer can therefore mediate electron transport to and from the immobilized ions, and their voltammetry becomes characteristic of thin-layer electrochemistry [Fig. 21(B)], with sharp symmetrical peaks that increase linearly with increasing scan speed. [Pg.589]

However, despite this lack of a basic understanding of the electrochemistry of these materials, much progress has been made in characterizing polymerization mechanisms, degradation processes, transport properties, and the mediation of the electrochemistry of species in solution. These advances have facilitated the development of numerous applications of conducting polymers, and so it can be anticipated that interest in their electrochemistry will remain high. [Pg.591]

Izntsn, Kosnke, Electrochemistry in Nonaqueous Solutions, Wiley, Chichester, West Snssex, England, 2002. [Pg.138]

Apart from the work toward practical lithium batteries, two new areas of theoretical electrochemistry research were initiated in this context. The first is the mechanism of passivation of highly active metals (such as lithium) in solutions involving organic solvents and strong inorganic oxidizers (such as thionyl chloride). The creation of lithium power sources has only been possible because of the specific character of lithium passivation. The second area is the thermodynamics, mechanism, and kinetics of electrochemical incorporation (intercalation and deintercalation) of various ions into matrix structures of various solid compounds. In most lithium power sources, such processes occur at the positive electrode, but in some of them they occur at the negative electrode as well. [Pg.359]

Photoemission phenomena are of great value for a number of areas in electrochemistry. In particnlar, they can be used to study the kinetics and mechanism of electrochemical processes involving free radicals as intermediates. Photoemission measurements can be also used to study electric double-layer structure at electrode surfaces. For instance by measuring the photoemission current in dilute solution and under identical conditions in concentrated solutions (where we know that / = 0), we can find the value of / in the dilute solution by simple calculations using Eq. (29.9). [Pg.564]

This definition of electrochemistry disregards systems in which nonequilibrium charged species are produced by external action in insulators for example, by electric discharge in the gas phase (electrochemistry of gases) or upon irradiation of liquid and sohd dielectrics (radiation chemistry). At the same time, electrochemistry deals with certain problems often associated with other fields of science, such as the structure and properties of sohd electrolytes and the kinetics of ioific reactions in solutions. [Pg.739]

Perhaps the most important experimental progress made recently in electrochemistry was the introduction of a scanning electrochemical microscope (SECM). Tsionsky et al. have used SECM to study also the rate of ET across a lipid monolayer at the water-benzene interface [48,49]. The presence of the monolayer decreased the rate of ET, being the decrease more significant for longer hydrocarbon chains and larger lipid concentration in solution. It was thus concluded that the ET reaction does not occur at defect sites in the lipid monolayer. [Pg.544]

The behavior of electrolytes in solutions constitutes one of the important areas fundamental to the study of electrochemistry. There will be much to gain by going through a presentation essentially to refreshen an elementary chemical text on the three most popular, extensively studied, and thoroughly understood electrolytes the acids, the bases, and the salts. [Pg.585]

It is an advantage of electroanalysis and its apparatus that the financial investment is low in comparison, for instance, with the more instrumental spectrometric methods real disadvantages are the need to have the analyte in solution and to be familiar with the various techniques and their electrochemistry it is to be regretted that the knowledge of chemistry and the skill needed often deter workers from applying electroanalysis when this offers possibilies competitive with more instrumental methods (cf., stripping voltammetry versus atomic absorption spectrometry). [Pg.226]

Kittel, C., Introduction to Solid State Physics, John Wiley Sons, New York, 1976. Robbins, J., Ions in Solution, Vol. 2, An Introduction to Electrochemistry, Oxford University Press, Oxford, 1972. [Pg.115]

Although from the thermodynamic point of view one can speak only about the reversibility of a process (cf. Section 3.1.4), in electrochemistry the term reversible electrode has come to stay. By this term we understand an electrode at which the equilibrium of a given reversible process is established with a rate satisfying the requirements of a given application. If equilibrium is established slowly between the metal and the solution, or is not established at all in the given time period, the electrode will in practice not attain a defined potential and cannot be used to measure individual thermodynamic quantities such as the reaction affinity, ion activity in solution, etc. A special case that is encountered most often is that of electrodes exhibiting a mixed potential, where the measured potential depends on the kinetics of several electrode reactions (see Section 5.8.4). [Pg.180]

The reduction electrochemistry of ECP porphyrin films furthermore responds to added axial ligands in the expected ways. We have tested this (2,6) for the ECP form of the iron complex of tetra(o-amino)phenyl)porphyrin by adding chloride and various nitrogeneous bases to the contacting solutions, observing the Fe(III/II) wave shift to expected potentials based on the monomer behavior in solution. This is additional evidence that the essential porphyrin structure is preserved during the oxidation of the monomer and its incorporation into a polymeric film. [Pg.412]


See other pages where Electrochemistry in Solution is mentioned: [Pg.247]    [Pg.118]    [Pg.112]    [Pg.104]    [Pg.286]    [Pg.247]    [Pg.118]    [Pg.112]    [Pg.104]    [Pg.286]    [Pg.149]    [Pg.314]    [Pg.35]    [Pg.27]    [Pg.1161]    [Pg.1234]    [Pg.14]    [Pg.115]    [Pg.21]    [Pg.552]    [Pg.69]    [Pg.77]    [Pg.153]    [Pg.244]    [Pg.286]    [Pg.408]    [Pg.16]    [Pg.218]    [Pg.13]    [Pg.15]    [Pg.21]    [Pg.427]    [Pg.13]    [Pg.439]   


SEARCH



Electrochemistry in nonaqueous solutions

Trapping-Spectroscopy-Electrochemistry of Individual Microdroplets in Solution (Nakatoni, Chikami, and Kitamura)

© 2024 chempedia.info