Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Components electroactive

Moody et al. introduced a more convenient approach for hquid membrane electrodes, where the membrane components (electroactive material, supporting polymer and plasticizer) were dissolved in tetrahydrofuran or cyclohexanone at room temperature. The cocktail was poured in a Petri dish, where the slow evaporation of the solvent left a flexible master sheet of 10-100 pm thickness. The membrane was cut with a cork borer and mounted at the end of a plastic tube. The electrode body was filled with a standard internal solution of the target ion and saturated KCl as desired for establishing the potential of the internal reference electrode. Since these membranes contained 70 % (w/w) plasticizer and because... [Pg.200]

Analysis for Single Components The analysis of samples containing only a single electroactive analyte is straightforward. Any of the standardization methods discussed in Ghapter 5 can be used to establish the relationship between current and the concentration of analyte. [Pg.521]

Conducting Polymer Blends, Composites, and Colloids. Incorporation of conducting polymers into multicomponent systems allows the preparation of materials that are electroactive and also possess specific properties contributed by the other components. Dispersion of a conducting polymer into an insulating matrix can be accompHshed as either a miscible or phase-separated blend, a heterogeneous composite, or a coUoidaHy dispersed latex. When the conductor is present in sufftcientiy high composition, electron transport is possible. [Pg.39]

Most electrochemical reactions occur at an interface between an electronic conductor system and an ionic conductor system. An interface has three components the two systems and the surface of separation. The electronic conductor stores one of the required chemicals electrons or wide electronic levels. The ionic conductor stores the other chemical needed for an electrochemical reaction the electroactive substance. A reaction occurs only if both components meet physically at the interface separating the two systems. [Pg.307]

GUO c, CAO G, SOFIC E and PRIOR R L (1997) High-performance liquid Chromatography coupled with coulometric array detection of electroactive components in fruits and vegetables Relationship to oxygen radical absorbance capacity, J Agric Food Chem, 45, 1787-96. [Pg.342]

To improve the selectivity of chronoamperometric in vivo analysis, a differential measurement ta hnique has been employed Instead of a single potential pulse, the potential is alternately pulsed to two different potentials giving rise to the name double chronoamperometry. This waveform is shown in Fig. 15 B. Because the current contributions of individual electroactive components add linearly to produce the observed current output, the difference in current response at the two potentials is the current due to only those compounds which are oxidized at the higher potential and not oxidized at the lower potential. This system provides two responses, the current due to easily oxidized compounds and the current due to harder to oxidize compounds. This gives greater selectivity than the direct chronoamperometric method. [Pg.36]

If the electrolyte components can react chemically, it often occurs that, in the absence of current flow, they are in chemical equilibrium, while their formation or consumption during the electrode process results in a chemical reaction leading to renewal of equilibrium. Electroactive substances mostly enter the charge transfer reaction when they approach the electrode to a distance roughly equal to that of the outer Helmholtz plane (Section 5.3.1). It is, however, sometimes necessary that they first be adsorbed. Similarly, adsorption of the products of the electrode reaction affects the electrode reaction and often retards it. Sometimes, the electroinactive components of the solution are also adsorbed, leading to a change in the structure of the electrical double layer which makes the approach of the electroactive substances to the electrode easier or more difficult. Electroactive substances can also be formed through surface reactions of the adsorbed substances. Crystallization processes can also play a role in processes connected with the formation of the solid phase, e.g. in the cathodic deposition of metals. [Pg.261]

According to Faraday s law, the current passing through the electrode is equivalent to the material flux of electroactive substances. The disappearance of electroactive substances in the electrode reaction is considered as their transport through the electrode surface. Consequently, only diffusion and migration but not convection flux need be considered at the electrode surface, as the electrode is impenetrable to the solution components. [Pg.290]

In the general case, the initial concentration of the oxidized component equals Cqx and that of the reduced component cRed. If the appropriate differential equations are used for transport of the two electroactive forms (see Eqs 2.5.3 and 2.7.16) with the corresponding diffusion coefficients, then the relationship between the concentrations of the oxidized and reduced forms at the surface of the electrode (for linear diffusion and simplified convective diffusion to a growing sphere) is given in the form... [Pg.292]

Radioactive tracer techniques. In electrochemistry, the procedure is essentially the same as in studies of chemical reactions the electroactive substance or medium (solvent, electrolyte) is labelled, the product of the electrode reaction is isolated and its activity is determined, indicating which part of the electroactive substance was incorporated into a given product or which other component of the electrolysed system participated in product formation. Measurement of the exchange current at an amalgam electrode by means of a labelled metal in the amalgam (see page 262) is based on a similar principle. [Pg.353]

So far, several examples have been given of the inhibition of electrocatalytic processes. This retardation is a result of occupation of the catalyti-cally more active sites by electroinactive components of the electrolyte, preventing interaction of the electroactive substances with these sites. The electrode process can also be inhibited by the formation of oxide layers on the surface and by the adsorption of less active intermediates and also of the products of the electrode process. [Pg.375]

In this section, we look more closely at what effect the chalcogen atom has on the properties of the molecular conductors we describe. We do not attempt to review exhaustively all the chalcogen-containing components in electroactive systems, to do so would be a colossal task. Instead, carefully chosen examples and studies illustrate how chalcogen chemistry is used in the design and manipulation of electroactive materials, and ultimately how it effects suitability for molecular device applications. [Pg.773]

The complex itself may contain all the ingredients to act as an electroactive SMM if the inorganic moiety is selected in the SMMs library [39]. The complex is an isolated unit which might be directly employed as a molecular component in spintronic and/or electronic devices. [Pg.60]

Electroactive 3-(N-phenylpyrazolyl)fullereno[l,2-r/]isoxazolines have been synthesized by using 1,3-dipolar cycloaddition of pyrazole nitrile oxides, generated in situ, to Cgo at elevated temperature or microwave irradiation. The cyclic voltammetry measurements show a strong donor pyrazole ring, and a better acceptor ability of the fullerene moiety than the parent C60 (538). Treating fullerene Cgo with mesitonitrile oxide in toluene gives fullerene-nitrile oxide adduct, which is supposed to be useful for electrical and optical components (539). [Pg.107]

The speed of p- and n-type doping and that of p-n junction formation depend on the ionic conductivity of the solid electrolyte. Because of the generally nonpolar characteristics of luminescent polymers like PPV, and the polar characteristics of solid electrolytes, the two components within the electroactive layer will phase separate. Thus, the speed of the electrochemical doping and the local densities of electrochemically generated p- and n-type carriers will depend on the diffusion of the counterions from the electrolyte into the luminescent semiconducting polymer. As a result, the response time and the characteristic performance of the LEC device will highly depend on the ionic conductivity of the solid electrolyte and the morphology and microstructure of the composite. [Pg.21]

Electrochemical biosensors are the most common especially when the biological component is an enzyme. Many enzyme reactions involve electroactive species being either consumed or generated and can be monitored by ampero-metric, potentiometric or conductimetric techniques, although the latter are the least developed and will not be discussed further. [Pg.192]

We have seen that the cell potential is generated at the interfaces between the electrodes and the electrolyte. Therefore, the composition of the electrode at this interface is important and this does not have to be identical with the bulk composition. In fact, large deviations have been observed due to segregation of some of the components of the electrode and especially due to impurities at the surface. If the surface of the electrode is equilibrated with the bulk, both have the same chemical potential of the electroactive component if that is sufficiently mobile in... [Pg.201]

Another kinetic aspect is observed if a component other than the electroactive species is predominantly mobile. The electroactive species are in this case made available to the electrolyte by the motion of the other components in the opposite direction. In a binary compound this does not make a difference to the electrode performance. But in the case of a compound with more than two components the composition is changed to values which are not expected from a thermodynamic point of view for the variation of the concentration of the electroactive species. Other phases are formed which may provide a lower or higher activity of the electroactive species than that expected thermodynamically. This has an influence both on the current and the cell voltage. Upon discharging and charging a galvanic cell, the composition of the electrode at the interface with the electrolyte may follow very different compositional pathways (Weppner, 1985). [Pg.216]


See other pages where Components electroactive is mentioned: [Pg.1933]    [Pg.135]    [Pg.184]    [Pg.64]    [Pg.78]    [Pg.227]    [Pg.627]    [Pg.154]    [Pg.278]    [Pg.6]    [Pg.595]    [Pg.596]    [Pg.66]    [Pg.228]    [Pg.143]    [Pg.157]    [Pg.332]    [Pg.765]    [Pg.768]    [Pg.250]    [Pg.254]    [Pg.184]    [Pg.629]    [Pg.840]    [Pg.297]    [Pg.298]    [Pg.455]    [Pg.201]    [Pg.202]    [Pg.202]    [Pg.207]    [Pg.209]    [Pg.215]   
See also in sourсe #XX -- [ Pg.91 ]




SEARCH



Electroactive

Electroactivity

© 2024 chempedia.info