Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemistry electroplating

Apphcations of ultrasound to electrochemistry have also seen substantial recent progress. Beneficial effects of ultrasound on electroplating and on organic synthetic apphcations of organic electrochemistry (71) have been known for quite some time. More recent studies have focused on the underlying physical theory of enhanced mass transport near electrode surfaces (72,73). Another important appHcation for sonoelectrochemistry has been developed by J. Reisse and co-workers for the electroreductive synthesis of submicrometer powders of transition metals (74). [Pg.265]

Table 1 Hsts many of acetamide s important physical properties. Acetamide, CH2CONH2, dissolves easily ia water, exhibiting amphoteric behavior. It is slow to hydroly2e unless an acid or base is present. The autodissociation constant is about 3.2 x 10 at 94°C. It combines with acids, eg, HBr, HCl, HNO, to form soHd complexes. The chemistry of metal salts ia acetamide melts has been researched with a view to developing electroplating methods. The hterature of acetamide melts and complexes, their electrochemistry and spectroscopy, has been critically reviewed (9). Table 1 Hsts many of acetamide s important physical properties. Acetamide, CH2CONH2, dissolves easily ia water, exhibiting amphoteric behavior. It is slow to hydroly2e unless an acid or base is present. The autodissociation constant is about 3.2 x 10 at 94°C. It combines with acids, eg, HBr, HCl, HNO, to form soHd complexes. The chemistry of metal salts ia acetamide melts has been researched with a view to developing electroplating methods. The hterature of acetamide melts and complexes, their electrochemistry and spectroscopy, has been critically reviewed (9).
Electrochemical systems are found in a number of industrial processes. In addition to the subsequent discussions of electrosynthesis, electrochemical techniques are used to measure transport and kinetic properties of systems (see Electroanalyticaltechniques) to provide energy (see Batteries Euel cells) and to produce materials (see Electroplating). Electrochemistry can also play a destmctive role (see Corrosion and corrosion control). The fundamentals necessary to analyze most electrochemical systems have been presented. More details of the fundamentals of electrochemistry are contained in the general references. [Pg.67]

Electrochemistry is widely used in industry, for example in effluent treatment, corrosion prevention and electroplating as well as in electrochemical synthesis. Electrochemical synthesis is a well-established technology for major processes such as aluminium and chlorine production there is, however, increased interest in the use of electrochemistry for clean synthesis of fine chemicals. The possible green benefits of using electrochemical synthesis include ... [Pg.228]

Lorimer P, Mason TJ (1999) Sonoelectrochemisry. The application of ultrasound in electroplating. Electrochemistry 67 924—930... [Pg.127]

Summary Electrochemistry is the study of chemical reactions that produce electricity, and chemical reactions that take place because electricity is supplied. Electrochemical reactions may be of many types. Electroplating is an electrochemical process. So are the electrolysis of water, the production of aluminum metal, and the production and storage of electricity in batteries. All these processes involve the transfer of electrons and redox reactions. [Pg.241]

Electrochemical cells are constructed, and their cell potentials are determined with a voltmeter. Electroplating is accomplished by using an external power supply, usually a battery, to plate a metal onto an electrode. (See Electrochemistry chapter.)... [Pg.296]

Sonoelectrochemistry can be considered as the interaction of sound (hence SONO) with electrochemistry which is itself the interconversion of electrical and chemical energies. Whilst this chapter will concentrate on the application of ultrasound to important industrial processes such electrodeposition (or electroplating) and electo-or-ganic synthesis, it is important to first introduce the concept of electrochemistry, for those who are unfamiliar, so that we will have a better understanding as to what precisely happens in an electrochemical or electroplating process and how the application of ultrasound will be of benefit. [Pg.225]

Having identified the main features of electrochemistry, the remainder of this chapter will focus on the use of electrolytic cells and will use as examples the electrodeposition (or electroplating) of metals such as copper, zinc, iron, chromium, nickel and silver. The chapter will also consider the electrochemistry of some organic molecules. Electroanalysis will not be considered since a full description is not within the scope of this chapter. Eor those interested readers, there is a review on the topic [2],... [Pg.230]

The development of ionic liquids dates to 1914. The first research efforts involved the synthesis of ethylammonium nitrate. Hurley and Wier at the Rice Institute in Texas, 1948, developed the first ionic liquids with chloro-aluminate ions as bath solutions for electroplating aluminum. These liquids were studied primarily for their applications as electrolytes in electrochemistry technologies such as electroplating, batteries and alloy preparations. [Pg.153]

Elemental copper is the least easily oxidized of the first-row transition metals. This largely accounts for the extensive use of copper electrodeposition for both industrial applications and analytical purposes. Since the electrochemistry of elemental copper, including electrodeposition, electroplating, and electrowinning, was treated extensively in the previous edition of this encyclopedia [1] and detailed descriptions are to be found elsewhere [2-4], it is not covered in this treatise. [Pg.993]

Although the entire discussion of electrochemistry thus far has been in terms of aqueous solutions, the same principles apply equaly well to nonaqueous solvents. As a result of differences in solvation energies, electrode potentials may vary considerably from those found in aqueous solution. In addition the oxidation and reduction potentials characteristic of the solvent vary with the chemical behavior of the solvent. as a result of these two effects, it is often possible to carry out reactions in a nonaqueous solvent that would be impossible in water. For example, both sodium and beryllium are too reactive to be electroplated from aqueous solution, but beryllium can be electroplated from liquid ammonia and sodium from solutions in pyridine. 0 Unfortunately, the thermodynamic data necessary to construct complete tables of standard potential values are lacking for most solvents other than water. Jolly 1 has compiled such a table for liquid ammonia. The hydrogen electrode is used as the reference point to establish the scale as in water ... [Pg.736]

Electrochemistry finds wide application. In addition to industrial electrolytic processes, electroplating, and the manufacture and use of batteries already mentioned, the principles of electrochemistry are used in chemical analysis, e.g.. polarography, and electrometric or conductometric titrations in chemical synthesis, e.g., dyestuffs, fertilizers, plastics, insecticides in biolugy and medicine, e g., electrophoretic separation of proteins, membrane potentials in metallurgy, e.g.. corrosion prevention, eleclrorefining and in electricity, e.g., electrolytic rectifiers, electrolytic capacitors. [Pg.543]

For further details see A Treatise on Electro-Metallurgy. McMillan and Cooper (Ohas. Griffin and Co., 1910) Electroplating, Barclay and Hainsworth (Arnold, 1912) Applied Electrochemistry, Allmand (Arnold, 1912). [Pg.34]

Finally, in chapter 6, another direction of applied electrochemistry is treated by Hovestad and Janssen Electroplating of Metal Matrix Composites by Codeposition of Suspended Particles. This is another area of metals materials-science where electroplating of a given metal is conducted in the presence of suspended particles, e.g. of A1203, BN, WC, SiC or TiC, which become electrodeposited as firmly bound occlusions. Such composite deposits have improved physical and electrochemical properties. Process parameters, and mechanisms and models of the codeposition processes are described in relation to bath... [Pg.553]

This book is recommended for scientists and engineers in chemistry, chemical engineering, materials science, corrosion, battery development, and electroplating. Graduate students in electrochemistry, electrochemical engineering, and materials science will also find it a challenging and stimulating introduction to electrode kinetics., ... [Pg.1]


See other pages where Electrochemistry electroplating is mentioned: [Pg.444]    [Pg.444]    [Pg.165]    [Pg.70]    [Pg.230]    [Pg.499]    [Pg.191]    [Pg.406]    [Pg.20]    [Pg.108]    [Pg.330]    [Pg.3]    [Pg.346]    [Pg.348]    [Pg.352]    [Pg.532]    [Pg.70]    [Pg.57]    [Pg.981]    [Pg.64]    [Pg.294]    [Pg.2]    [Pg.33]    [Pg.370]    [Pg.374]    [Pg.46]    [Pg.297]    [Pg.194]    [Pg.195]    [Pg.152]    [Pg.98]    [Pg.37]    [Pg.482]    [Pg.5]   
See also in sourсe #XX -- [ Pg.159 ]




SEARCH



Electroplating

© 2024 chempedia.info