Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemical reaction impedance

Some emphasis has been placed inthis Section on the nature of theel trified interface since it is apparent that adsorption at the interface between the metal and solution is a precursor to the electrochemical reactions that constitute corrosion in aqueous solution. The majority of studies of adsorption have been carried out using a mercury electrode (determination of surface tension us. potential, impedance us. potential, etc.) and this has lead to a grater understanding of the nature of the electrihed interface and of the forces that are responsible for adsorption of anions and cations from solution. Unfortunately, it is more difficult to study adsorption on clean solid metal surfaces (e.g. platinum), and the situation is even more complicated when the surface of the metal is filmed with solid oxide. Nevertheless, information obtained with the mercury electrode can be used to provide a qualitative interpretation of adsorption phenomenon in the corrosion of metals, and in order to emphasise the importance of adsorption phenomena some examples are outlined below. [Pg.1188]

Measurements of electrochemical noise and AC impedance of coated metal substrates are under development (indeed have been used for quite some time). These measurements relate to the corrosion protection afforded by the coating and can, in principle, be made continuously. The complexity of the electrochemical reactions require sophisticated data analysis for extraction of useful information and relationships. [Pg.89]

Transient measnrements (relaxation measurements) are made before transitory processes have ended, hence the current in the system consists of faradaic and non-faradaic components. Such measurements are made to determine the kinetic parameters of fast electrochemical reactions (by measuring the kinetic currents under conditions when the contribution of concentration polarization still is small) and also to determine the properties of electrode surfaces, in particular the EDL capacitance (by measuring the nonfaradaic current). In 1940, A. N. Frumkin, B. V. Ershler, and P. I. Dolin were the first to use a relaxation method for the study of fast kinetics when they used impedance measurements to study the kinetics of the hydrogen discharge on a platinum electrode. [Pg.199]

The impedance with its components R and C is known as the Warburg diffusion impedance, and constant as the Warburg constant. In the equivalent circuits for electrochemical reactions, a Warburg impedance is represented by the symbol -W- as shown in the lower part of Fig. 12.15b. [Pg.213]

This value represents the upper limit of a first order reaction rate constant, k, which may be determined by the RHSE. This limit is approximately one order of magnitude smaller that of a rotating electrode. One way to extend the upper limit is to combine the RHSE with an AC electrochemical technique, such as the AC impedance and faradaic rectification metods. Since the AC current distribution is uniform on a RHSE, accurate kinetic data may be obtained for the fast electrochemical reactions with a RHSE. [Pg.201]

IZI=J(Z )2+(Z ), and phase angle shift,, vs. f). The electrochemical system is then simulated with an electrical circuit that gives the same impedance response. Ideally this electrical circuit is composed of linear passive elements, e.g. resistors and capacitors, each of which represents individual physicochemical steps in the electrochemical reaction. ... [Pg.637]

One of the most powerful methods for the investigation of electrochemical reactions is the use of alternating current (AC) impedance techniques. In order to understand the basis of this approach, however, it is helpful first to consider some simple electronic analogues which mimic closely the systems of electrochemical interest. [Pg.160]

The electrochemical impedance gradually decreases but does not vary very much with the DDTC concentration increasing. It indicates that DDTC takes part in the electrochemical reaction and the reaction rate increases as the DDTC concentration enhances. As contrasted with it, the passivation of the collector-salts of reaction production on the mineral electrode further inhibits the anodic reaction so that the electrochemical resistance is wholly much bigger than that of self-corrosive reaction in the absence of DDTC. [Pg.79]

Figure 5.10 is EIS of marmatite electrode in O.lmol/L KNO3 solution with different pH modifiers at open circuit potential. This EIS is very complicated. Simple equivalent circuit can be treated as the series of electrochemical reaction resistance R with the capacitance impedance Q == (nFr )/(icR ) resulting fi-om adsorbing action, and then parallel with the capacitance Ca of double electric... [Pg.119]

This corrosion of the SEI by linear carbonate solvents would undoubtedly produce adverse effects on the performance of lithium ion cells. During longterm cycling, the damaged SEI has to be repaired constantly by the same electrochemical reactions that occurred in the initial formation process, which consumes the limited lithium ion source in the cell and increases the impedance at the electrode/ electrolyte interface. [Pg.115]

A more reliable method for the determination of the fb potential can be drawn from a thorough investigation of the complete impedance diagram equivalent to the space charge layer. In fact, the main difficulty encountered in the Mott-Schottky plot is the rather wide range potential for the C extrapolation, which necessarily lead to values where electrochemical reactions contribute to changing the surface properties of the substrate. Moreover, the expected linear relationship shows a significant deviation, which is explained... [Pg.312]

Data from electrochemical impedance diagrams yield a simplified quantitative analysis for an appropriate interpretation of the linear sweep voltammetry (LSV) experiments. In fact, the Si electrode potential measured with respect to the reference electrode represents the value within the bulk of the material. The direct current flow for the electrochemical reaction has to overcome the resistance of the space charge layer, which can reach extremely high values when a depletion layer is formed. For p-type Si in the potential range for the HER onset, this excess surface resistance is over 10 f2 cm. Thus, even with a bias of —1 V, the DC... [Pg.316]

The electrochemical reaction rate for the anodic etching of Si in HF was very rapid. This is confirmed by the electrochemical impedance diagram of Fig. 7 that shows a real component equal to 150 cm, and is the result of the high reactivity of the transient bare —Si sites that appear under anodic current. The detailed mechanism of the transformation was investigated by FIS, which revealed quite an unusual inductive loop, which is shown in Fig. 7. Such a diagram was obtained by modeling the reaction kinetics based... [Pg.318]

The same consideration applies to the impedance measurement according to Fig. 8.1b. It is a normal electrochemical interface to which the Warburg element (Zw) has been added. This element corresponds to resistance due to translational motion (i.e., diffusion) of mobile oxidized and reduced species in the depletion layer due to the periodically changing excitation signal. This refinement of the charge-transfer resistance (see (5.23), Chapter 5) is linked to the electrochemical reaction which adds a characteristic line at 45° to the Nyquist plot at low frequencies (Fig. 8.2)... [Pg.243]

Bessler W., 2005. New computational approach for SOFC impedance from detailed electrochemical reaction-diffusion models. Solid State Ionics 176, 997-1011. [Pg.90]

Impedance spectroscopy is an effective technique for probing the features of chemically-modified electrodes and for understanding electrochemical reaction rates (87,88). Impedance is the totally complex resistance encountered... [Pg.58]

FIGURE 1.19 Complex-plane impedance plot (Nyquist plane) for an electrochemical reaction under kinetic control. [Pg.25]

Impedance spectroscopy is a helpful means for studying both the bulk transport properties of a material and the electrochemical reactions on its surface. The importance of impedance spectroscopy arises from the efficacy of the methodology in separating individual reaction-migration paces into a multistep process, since each reaction or migration step has, ideally, a single time constant related with it consequently, each step can be separated in the frequency domain ... [Pg.401]

In a simple case, the electrochemical reaction at the electrode-electrolyte interface of one of the electrodes of the battery can be represented by the so-called Randles circuit (Figure 8.19), which is composed of [129] a double layer capacitor formed by the charge separation at the electrodeelectrolyte interface, in parallel to a polarization resistor and the Warburg impedance connected in series with a resistor, which represents the resistance of the electrolyte. [Pg.404]

The Warburg impedance, which is important at low frequencies, is related to the transport of the active species in the electrochemical reaction. The expression for the Warburg impedance in an infinite medium is given by [129,130]... [Pg.404]

To be more specific, we now refer to Equations 8.86 and 8.88, which represent the impedance of the equivalent circuit corresponding to the electrochemical reaction at the electrode-electrolyte interface. If in Equation 8.86 we calculate the limit for co —> 0, then the intercept of the plot in the real axis is Zr = Rs + Rp on the other hand, if the limit for co —> is calculated, then Zr = Rs. Besides, at the frequency where a maximum of X, (co) is detected, we have Rp Cdl = l/comax = x, where the time constant, x, indicates how fast the electrochemical reaction is. Finally knowing Rp Cdl = l/comax, it is possible to calculate Cdi [129,130],... [Pg.407]

Impedance spectroscopy is predestined to separate the contributions of bulk and electrodes to the overall electrical properties of a solid and can thus be employed to investigate the kinetics of electrochemical reactions. However, the relaxation fre-... [Pg.29]

A typical impedance spectrum obtained on LSM microelectrodes is shown in Fig. 42a. The arc represents the impedance due to the electrochemical reaction at the LSM microelectrode. A small ohmic drop caused by the YSZ electrolyte (and partly by the sheet resistance due to the finite electronic conductivity of the LSM electrode) is more than three orders of magnitude smaller than the electrode resistance and not visible in the figure. The impedance spectra for nominally identical microelectrodes turned out to be reproducible with a standard deviation <15%. The data of Fig. 42b display the relation between the electrode resistance Rei and the microelectrode diameter dme several series of experiments with different electrode thicknesses consistently revealed that the resistance Rei is approximately proportional to dmc 2. and hence to the inverse electrode area. [Pg.73]

Fig. 43. Double-logarithmic plot of the electrode polarization resistance versus the microelectrode diameter measured with impedance spectroscopy (ca. 800 °C) at (a) a cathodic dc bias of -300 mV, and (b) at an anodic dc bias of +300 mV. In (b) the first data point of the 20-pm microelectrode is not included in the fit. (c) Sketch illustrating the path of the oxygen reduction reaction for cathodic bias, (d) Path of the electrochemical reaction under anodic bias the rate-determining step occurs close to the three-phase boundary. Fig. 43. Double-logarithmic plot of the electrode polarization resistance versus the microelectrode diameter measured with impedance spectroscopy (ca. 800 °C) at (a) a cathodic dc bias of -300 mV, and (b) at an anodic dc bias of +300 mV. In (b) the first data point of the 20-pm microelectrode is not included in the fit. (c) Sketch illustrating the path of the oxygen reduction reaction for cathodic bias, (d) Path of the electrochemical reaction under anodic bias the rate-determining step occurs close to the three-phase boundary.
Fleig reviews fundamental aspects of solid state ionics, and illustrates many similarities between the field of solid state electrochemistry and liquid electrochemistry. These include the consideration of mass and charge transport, electrochemical reactions at electrode/solid interfaces, and impedance spectroscopy. Recent advances in microelectrodes based on solid state ionics are reviewed, along with their application to measuring inhomogeneous bulk conductivities, grain boundary properties, and electrode kinetics of reactions on anion conductors. [Pg.380]

The information required to predict electrochemical reaction rates (i.e., experimentally determined by Evans diagrams, electrochemical impedance, etc.) depends upon whether the reaction is controlled by the rate of charge transfer or by mass transport. Charge transfer controlled processes are usually not affected by solution velocity or agitation. On the other hand, mass transport controlled processes are strongly influenced by the solution velocity and agitation. The influence of fluid velocity on corrosion rates and/or the rates of electrochemical reactions is complex. To understand these effects requires an understanding of mixed potential theory in combination with hydrodynamic concepts. [Pg.151]


See other pages where Electrochemical reaction impedance is mentioned: [Pg.299]    [Pg.341]    [Pg.605]    [Pg.211]    [Pg.153]    [Pg.343]    [Pg.27]    [Pg.7]    [Pg.41]    [Pg.177]    [Pg.139]    [Pg.240]    [Pg.35]    [Pg.37]    [Pg.51]    [Pg.52]    [Pg.60]    [Pg.23]    [Pg.46]    [Pg.47]    [Pg.294]    [Pg.308]   


SEARCH



Electrochemical reaction impedance Capacitance

Electrochemical reaction impedance Resistance

Electrochemical reactions

Impedance electrochemical

© 2024 chempedia.info