Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrical property effect

Equations (6.5) and (6.12) contain terms in x to the second and higher powers. If the expressions for the dipole moment /i and the polarizability a were linear in x, then /i and ot would be said to vary harmonically with x. The effect of higher terms is known as anharmonicity and, because this particular kind of anharmonicity is concerned with electrical properties of a molecule, it is referred to as electrical anharmonicity. One effect of it is to cause the vibrational selection mle Au = 1 in infrared and Raman spectroscopy to be modified to Au = 1, 2, 3,. However, since electrical anharmonicity is usually small, the effect is to make only a very small contribution to the intensities of Av = 2, 3,. .. transitions, which are known as vibrational overtones. [Pg.142]

Electrica.1 Properties. The electrical properties of SF stem primarily from its effectiveness as an electron scavenger. To accomplish electrical breakdown in a dielectric gas, primary electrons must gain sufficient energy to generate appreciable numbers of secondary electrons on molecular impact. Sulfur hexafluoride interferes with this process by capturing the primary electrons, resulting in the formation of SF or SF ions and F atoms (29) ... [Pg.241]

Electrical Properties. Generally, deposited thin films have an electrical resistivity that is higher than that of the bulk material. This is often the result of the lower density and high surface-to-volume ratio in the film. In semiconductor films, the electron mobiHty and lifetime can be affected by the point defect concentration, which also affects electromigration. These effects are eliminated by depositing the film at low rates, high temperatures, and under very controUed conditions, such as are found in molecular beam epitaxy and vapor-phase epitaxy. [Pg.529]

The principal effects of air pollutants on metals are corrosion of the surface, with eventual loss of material from the surface, and alteration in the electrical properties of the metals. Metals are divided into two categories—ferrous and nonferrous. Ferrous metals contain iron and include various types of steel. Nonferrous metals, such as zinc, aluminum, copper, and silver, do not contain iron. [Pg.126]

Since the incorporation of plasticisers into a polymer compound brings about a reduction in glass temperature they will also have an effect on the electrical properties. Plasticised PVC with a glass temperature below that of the testing temperature will have a much higher dielectric constant than unplasticised PVC at the same temperature (Figure 6.6). [Pg.116]

The nylons are reasonably good electrical insulators at low temperatures and under conditions of low humidity but the insulation properties deteriorate as humidity and temperature increase. The effects of the amount of absorbed water on the volume resistivity of nylon 66 is shown in Figure 18.15. This effect is even greater with nylon 6 but markedly less with nylon 11. Some typical electrical properties of the nylons are given in Table 18.5. [Pg.494]

The absorbed water has a plasticising effect and thus will cause a reduction in tensile strength and modulus, and an increase in impact strength. As has already been mentioned the presence of absorbed water also results in a deterioration of electrical properties. [Pg.495]

The number of hardening agents used commercially is very large and the final choice will depend on the relative importance of economics, ease of handling, pot life, cure rates, dermatitic effects and the mechanical, chemical, thermal and electrical properties of the cured products. Since these will differ from application to application it is understandable that such a wide range of material is employed. [Pg.761]

A role is also played by the temperature and frequency dependence of the photocurrent, the variable surface sensitivity at various parts of the cathode and the vector effect of polarized radiation [40]. All the detectors discussed below are electronic components whose electrical properties vary on irradiation. The effects depend on external (photocells, photomultipliers) or internal photo effects (photoelements, photodiodes). [Pg.24]

As shown above, experiments on individual MWCNTs allowed to illustrate a variety of new electrical properties on these materials, including 2D quantum interference effects due to weak localisation and UCFs. However, owing to the relatively large diameters of the concentric shells, no ID quantum effects have been observed. In addition, experimental results obtained on MWCNTs were found difficult to interpret in a quantitative way due to simultaneous contributions of concentric CNTs with different diameters and chiralities. [Pg.119]

These use crystalline materials in which the electrical properties of the material are changed when it undergoes slight deformation by, for example, the application of mechanical pressure. The principal effect is to cause a change in the frequency at which the material resonates. This change in resonant frequency can be detected and measured, so giving an indication of the change in pressure. [Pg.244]

The principal use of gold is as a very thin coating about 0-05 /xm thick for electrical and electronic applications. Because of the thinness of gold electrodeposits, porosity must be very carefully controlled since seepage of corrosion products from substrate or undercoat exposed at these pores can have serious adverse effects on both appearance and electrical properties of the composite. The porosity can vary with the thickness of the deposit (Fig. 13.1), and with the type of plating bath and with its method of operation (Fig. 13.2), and the phenomenon has been extensively studied by Clarke and many other workers. [Pg.461]


See other pages where Electrical property effect is mentioned: [Pg.440]    [Pg.144]    [Pg.352]    [Pg.375]    [Pg.70]    [Pg.72]    [Pg.418]    [Pg.496]    [Pg.221]    [Pg.396]    [Pg.449]    [Pg.331]    [Pg.457]    [Pg.35]    [Pg.45]    [Pg.122]    [Pg.1611]    [Pg.143]    [Pg.251]    [Pg.354]    [Pg.252]    [Pg.90]    [Pg.114]    [Pg.145]    [Pg.159]    [Pg.1017]    [Pg.470]    [Pg.475]    [Pg.476]    [Pg.906]    [Pg.546]    [Pg.205]    [Pg.427]   
See also in sourсe #XX -- [ Pg.495 , Pg.496 ]




SEARCH



Correlation effects electrical properties bases

Effect of Reinforcing Agents on Electrical Properties

Effect of Reinforcing Agents on Electrical and Mechanical Properties

Effect on electrical properties

Electric effective

Electric properties size effect dipole moment

Electrical effects

Electrical properties field-effect transistors

Electrical properties oxygen content effects

Electrical properties radiation, effects

Electrical properties temperature effects

Electrical properties, isotope effects

Electrical property effect polyaniline

Electricity, effects

© 2024 chempedia.info