Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electric ultrasonic properties

Thermal decompositions have been studied most effectively by mass spectroscopic thermal analysis, thermogravimetric analysis, and electrical conductivity. Several analytical characterizations of phenolic resins have recently been reported, making use of a variety of properties, including expansion coefficients, " specific heat capacity, ultrasonic properties, dipole moments, and laser light scattering. Recently, high-temperature properties of reinforced phenolic components have been studied by Goetzel. ... [Pg.91]

Another important class of titanates that can be produced by hydrothermal synthesis processes are those in the lead zirconate—lead titanate (PZT) family. These piezoelectric materials are widely used in manufacture of ultrasonic transducers, sensors, and minia ture actuators. The electrical properties of these materials are derived from the formation of a homogeneous soHd solution of the oxide end members. The process consists of preparing a coprecipitated titanium—zirconium hydroxide gel. The gel reacts with lead oxide in water to form crystalline PZT particles having an average size of about 1 ]lni (Eig. 3b). A process has been developed at BatteUe (Columbus, Ohio) to the pilot-scale level (5-kg/h). [Pg.500]

Liquid Level. The most widely used devices for measuring Hquid levels involve detecting the buoyant force on an object or the pressure differential created by the height of Hquid between two taps on the vessel. Consequently, care is required in locating the tap. Other less widely used techniques utilize concepts such as the attenuation of radiation changes in electrical properties, eg, capacitance and impedance and ultrasonic wave attenuation. [Pg.65]

Hinrichs and Thuen [28] used ultrasonic attenuation to determine the proper time for pressure application during an otherwise traditional pre-established cure cycle. Because dielectric is an electrical property, it is influenced by moisture content and temperature as well as viscosity, so it may vary quantitatively. Ultrasonic measurements are also affected by other parameters (i.e., void content), but they are a mechanical measurement rather than an electric one. The ultrasonic sensors used by Hinrichs unfortunately were less reliable than the dielectric sensors. [Pg.463]

Pressure jump and electric field jump methods have also been used, as have methods depending upon periodic changes in some property. For example, absorption of ultrasonic sound causes a periodic change in the pressure of the system. [Pg.468]

It is perhaps less easy to excuse the lack of a chapter on non-destructive testing. The reason is a mixture of the fact that the major NDT techniques are, in the main only applied to a few particular rubber products and the realisation that to properly describe all methods would require a book, not a chapter. It is, however, worth remembering that it is not only ultrasonics, radiography, holography and so on which are non-destructive. A number of the more traditional rubber tests, for example electrical properties, many dynamic tests, hardness and dimensional measures leave you with the product intact. There are text books which deal with NDT techniques generally and. a comprehensive review of NDT of polymers by Gross in Handbook of Polymer Testing3. [Pg.5]

As mentioned above, an important factor that controls the performance and especially the electrical properties of CNTs-reinforced composites is the state of dispersion of CNTs. Ultrasonication has been shown to be more effective in dispersing the nanotubes without the need for surfactants or other chemical treatments. Figure 12.5b presents electrical results of samples prepared by using a different composite processing. MWNTS were dispersed in this case in cyclohexane by ultrasonication and the MWNTs suspension was then mixed into a cyclohexane solution of SBR. Mixing was achieved by a further sonication for 30 minutes. Cyclohexane has been chosen in this case on account of the solubility of the rubbers in this solvent. As revealed in Figure 12.5b, the percolation threshold is shifted to a lower nanotube content and from this point of view, measurements of electrical resistivity appears as an indirect tool to evaluate the state of dispersion. [Pg.353]

Coupling of mechanic stress and electrical polarization results in piezoelectricity. KDP type materials are piezoelectrics at room temperature and ADP was formerly used in submarine applications to emit and receive ultrasonic waves. Berlinite, AIPO4, is structurally related to the common piezoelectric a -Si02 (see Section 5.1.2) and has superior properties in some respects. [Pg.3640]

As the readers may see, quartz crystal resonator (QCR) sensors are out of the content of this chapter because their fundamentals are far from spectrometric aspects. These acoustic devices, especially applied in direct contact to an aqueous liquid, are commonly known as quartz crystal microbalance (QCM) [104] and used to convert a mass ora mass accumulation on the surface of the quartz crystal or, almost equivalent, the thickness or a thickness increase of a foreign layer on the crystal surface, into a frequency shift — a decrease in the ultrasonic frequency — then converted into an electrical signal. This unspecific response can be made selective, even specific, in the case of QCM immunosensors [105]. Despite non-gravimetric contributions have been attributed to the QCR response, such as the effect of single-film viscoelasticity [106], these contributions are also showed by a shift of the fixed US frequency applied to the resonator so, the spectrum of the system under study is never obtained and the methods developed with the help of these devices cannot be considered spectrometric. Recent studies on acoustic properties of living cells on the sub-second timescale have involved both a QCM and an impedance analyser thus susceptance and conductance spectra are obtained by the latter [107]. [Pg.347]


See other pages where Electric ultrasonic properties is mentioned: [Pg.222]    [Pg.82]    [Pg.568]    [Pg.4119]    [Pg.135]    [Pg.282]    [Pg.933]    [Pg.209]    [Pg.520]    [Pg.153]    [Pg.58]    [Pg.56]    [Pg.32]    [Pg.259]    [Pg.295]    [Pg.178]    [Pg.615]    [Pg.217]    [Pg.520]    [Pg.3]    [Pg.88]    [Pg.122]    [Pg.20]    [Pg.112]    [Pg.273]    [Pg.164]    [Pg.121]    [Pg.92]    [Pg.153]    [Pg.138]    [Pg.182]    [Pg.186]    [Pg.237]    [Pg.298]    [Pg.264]    [Pg.371]    [Pg.1818]    [Pg.1822]    [Pg.122]   
See also in sourсe #XX -- [ Pg.562 ]




SEARCH



© 2024 chempedia.info