Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electric potentials, formation interfaces

The electrical double layer and the formation of electric potentials at interfaces... [Pg.20]

A general prerequisite for the existence of a stable interface between two phases is that the free energy of formation of the interface be positive were it negative or zero, fluctuations would lead to complete dispersion of one phase in another. As implied, thermodynamics constitutes an important discipline within the general subject. It is one in which surface area joins the usual extensive quantities of mass and volume and in which surface tension and surface composition join the usual intensive quantities of pressure, temperature, and bulk composition. The thermodynamic functions of free energy, enthalpy and entropy can be defined for an interface as well as for a bulk portion of matter. Chapters II and ni are based on a rich history of thermodynamic studies of the liquid interface. The phase behavior of liquid films enters in Chapter IV, and the electrical potential and charge are added as thermodynamic variables in Chapter V. [Pg.1]

The presence of an electrical potential drop, i.e., interfacial potential, across the boundary between two dissimilar phases, as well as at their surfaces exposed to a neutral gas phase, is the most characteristic feature of every interface and surface electrified due to the ion separation and dipole orientation. This charge separation is usually described as the formation of the ionic and dipolar double layers. The main interfacial potential is the Galvani potential (termed also by Trasatti the operative potential), which is the difference of inner potentials (p and of both phases. It is a function only of the chemical... [Pg.18]

It follows from the above that the mechanism for electrical potential oscillation across the octanol membrane in the presence of SDS would most likely be as follows dodecyl sulfate ions diffuse into the octanol phase (State I). Ethanol in phase w2 must be available for the transfer energy of DS ions from phase w2 to phase o to decrease and thus, facilitates the transfer of DS ions across this interface. DS ions reach interface o/wl (State II) and are adsorbed on it. When surfactant concentration at the interface reaches a critical value, a surfactant layer is formed at the interface (State III), whereupon, potential at interface o/wl suddenly shifts to more negative values, corresponding to the lower potential of oscillation. With change in interfacial tension of the interface, the transfer and adsorption of surfactant ions is facilitated, with consequent fluctuation in interface o/ wl and convection of phases o and wl (State IV). Surfactant concentration at this interface consequently decreased. Potential at interface o/wl thus takes on more positive values, corresponding to the upper potential of oscillation. Potential oscillation is induced by the repetitive formation and destruction of the DS ion layer adsorbed on interface o/wl (States III and IV). This mechanism should also be applicable to oscillation with CTAB. Potential oscillation across the octanol membrane with CTAB is induced by the repetitive formation and destruction of the cetyltrimethylammonium ion layer adsorbed on interface o/wl. Potential oscillation is induced at interface o/wl and thus drugs were previously added to phase wl so as to cause changes in oscillation mode in the present study. [Pg.711]

Based on the above results and discussion, the mechanism for the rhythmic oscillations at the oil/water interface with surfactant and alcohol molecules may be explained in the following way [3,47,48] with reference to Table 1. As the first step, surfactant and alcohol molecules diffuse from the bulk aqueous phase to the interface. The surfactant and alcohol molecules near the interface tend to form a monolayer. When the concentration of the surfactant together with the alcohol reaches an upper critical value, the surfactant molecules are abruptly transferred to the organic phase with the formation of inverted micelles or inverted microemulsions. This step should be associated with the transfer of alcohol from the interface to the organic phase. Thus, when the concentration of the surfactant at the interface decreases below the lower critical value, accumulation of the surfactant begins and the cycle is repeated. Rhythmic changes in the electrical potential and the interface tension are thus generated. [Pg.251]

The previous section discussed the structure at the junction of two phases, the one a solid electron conductor, the other an ionic solution. Why is this important Knowledge of the structure of the interface, the distribution of particles in this region, and the variation of the electric potential in the double layer, permits one to control reactions occurring in this region. Control of these reactions is important because they are the foundation stones of important mechanisms linked to the understanding of industrial processes and problems, such as deposition and dissolution of metals, corrosion, electrocatalysis, film formation, and electro-organic synthesis. [Pg.65]

Fig. 7.21. When a junction between a p-type and an n-type of semiconductor is established (a), a diffusion of holes and electrons in the opposite direction takes place (b). This results in a separation of charge (c) and the formation of an electrical potential difference across the interface (d). Fig. 7.21. When a junction between a p-type and an n-type of semiconductor is established (a), a diffusion of holes and electrons in the opposite direction takes place (b). This results in a separation of charge (c) and the formation of an electrical potential difference across the interface (d).
The formation of an electrical double layer at a metal-solution interface brings about a particular arrangement of atoms, ions and molecules in the region near the electrode surface, and an associated variation in electrical potential with distance from the interface. The double layer structure may significantly affect the rates of electrochemical reactions. [Pg.21]

Interface between two liquid solvents — Two liquid solvents can be miscible (e.g., water and ethanol) partially miscible (e.g., water and propylene carbonate), or immiscible (e.g., water and nitrobenzene). Mutual miscibility of the two solvents is connected with the energy of interaction between the solvent molecules, which also determines the width of the phase boundary where the composition varies (Figure) [i]. Molecular dynamic simulation [ii], neutron reflection [iii], vibrational sum frequency spectroscopy [iv], and synchrotron X-ray reflectivity [v] studies have demonstrated that the width of the boundary between two immiscible solvents comprises a contribution from thermally excited capillary waves and intrinsic interfacial structure. Computer calculations and experimental data support the view that the interface between two solvents of very low miscibility is molecularly sharp but with rough protrusions of one solvent into the other (capillary waves), while increasing solvent miscibility leads to the formation of a mixed solvent layer (Figure). In the presence of an electrolyte in both solvent phases, an electrical potential difference can be established at the interface. In the case of two electrolytes with different but constant composition and dissolved in the same solvent, a liquid junction potential is temporarily formed. Equilibrium partition of ions at the - interface between two immiscible electrolyte solutions gives rise to the ion transfer potential, or to the distribution potential, which can be described by the equivalent two-phase Nernst relationship. See also - ion transfer at liquid-liquid interfaces. [Pg.358]

The formation of 2D Meads phases on a foreign substrate, S, in the underpotential range can be well described considering the substrate-electrolyte interface as an ideally polarizable electrode as shown in Section 8.2. In this case, only sorption processes of electrolyte constituents, but no Faradaic redox reactions or Me-S alloy formation processes are allowed to occur, The electrochemical double layer at the interface can be thermodynamically considered as a separate interphase [3.54, 3.212, 3.213]. This interphase comprises regions of the substrate and of the electrolyte with gradients of intensive system parameters such as chemical potentials of ions and electrons, electric potentials, etc., and contains all adsorbates and all surface energy. Furthermore, it is assumed that the chemical potential //Meads is a definite function of the Meads surface concentration, F, and the electrode potential, E, at constant temperature and pressure Meads (7", ). Such a model system can only be... [Pg.43]

At frequencies below 63 Hz, the double-layer capacitance began to dominate the overall impedance of the membrane electrode. The electric potential profile of a bilayer membrane consists of a hydrocarbon core layer and an electrical double layer (49). The dipolar potential, which originates from the lipid bilayer head-group zone and the incorporated protein, partially controls transmembrane ion transport. The model equivalent circuit presented here accounts for the response as a function of frequency of both the hydrocarbon core layer and the double layer at the membrane-water interface. The value of Cdl from the best curve fit for the membrane-coated electrode is lower than that for the bare PtO interface. For the membrane-coated electrode, the model gives a polarization resistance, of 80 kfl compared with 5 kfl for the bare PtO electrode. Formation of the lipid membrane creates a dipolar potential at the interface that results in higher Rdl. The incorporated rhodopsin may also extend the double layer, which makes the layer more diffuse and, therefore, decreases C. ... [Pg.498]

During the process of adsorption of surfactant ions at a liquid-fluid interface the surface electric potential and charge density increase with time. This leads to the formation of an electric double layer inside the solution. The charged surface repels the new-coming surfactant molecules (Fig. 4.10), which results in an apparent deceleration of the adsorption process. On the other hand, the existence of the electric double layer (DEL in agreement with the nomination given in [2]) changes the amount of adsorbed surfaetant ions needed to reach equilibrium. This decreases the rate of adsorption so that the total rate is a counterbalance of various influences and it cannot be estimated a priori if a deceleration or an acceleration of the equilibration of an adsorption layer results. The most recent analysis of the different relaxation processes inherent in the adsorption process of ionic surfactants has been performed by Danov et al. [33]. In this work the inclusion of counterions into the Stem layer was performed for the first time. [Pg.313]


See other pages where Electric potentials, formation interfaces is mentioned: [Pg.140]    [Pg.698]    [Pg.498]    [Pg.156]    [Pg.182]    [Pg.196]    [Pg.5]    [Pg.443]    [Pg.151]    [Pg.315]    [Pg.79]    [Pg.53]    [Pg.16]    [Pg.267]    [Pg.71]    [Pg.71]    [Pg.72]    [Pg.4350]    [Pg.288]    [Pg.71]    [Pg.71]    [Pg.72]    [Pg.338]    [Pg.231]    [Pg.354]    [Pg.293]    [Pg.700]    [Pg.53]    [Pg.256]    [Pg.422]    [Pg.4349]    [Pg.630]    [Pg.222]    [Pg.16]    [Pg.298]    [Pg.516]   


SEARCH



Electric potentials, formation

Electrical potential

Interface electrical

Interface formation

Interface potential

© 2024 chempedia.info