Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elastomer brittleness

Since this network approach to property improvement is of considerable practical and fundamental interest, a number of studies on PDMS elastomers were carried out to determine the impact of the molecular weights of the short chains, the proportions of short and long chains, and crosslink functionalities. The ultimate strength goes through a maximum with increasing amount of short chains, frequently in the vicinity of 95 mol % short chains. Too many short chains may make the elastomer brittle. These results are important in that they can be used to optimize improvements in mechanical properties. [Pg.165]

Low Temperature Properties. The property of solvent resistance makes fluorosihcone elastomers usefiil where alternative fluorocarbon elastomers cannot function. The abiHty to retract to 10% of their original extension after a 100% elongation at low temperature is an important test result. Eluorosihcones can typically pass this test down to —59°C. The brittle point is approximately —68°C. [Pg.399]

Polypropylene. PP is a versatile polymer, use of which continues to grow rapidly because of its excellent performance characteristics and improvements in its production economics, eg, through new high efficiency catalysts for gas-phase processes. New PP-blend formulations exhibit improved toughness, particularly at low temperatures. PP has been blended mechanically with various elastomers from a time early in its commercialisation to reduce low temperature brittleness. [Pg.421]

In the early stages of development of polypropylene rubbers, particularly butyl rubber, were used to reduce the brittleness of polypropylene. Their use declined for some years with the development of the polypropylene copolymers but interest was greatly renewed in the 1970s. This interest has been centred largely around the ethylene-propylene rubbers which are reasonably compatible in all proportions with polypropylene. At first the main interest was with blends in which the rubber content exceeded 50% of the blend and such materials have been designated as thermoplastic polyolefin elastomers (discussed in Section 11.9.1). There is also increasing interest in compounds with less than 50% rubber, often referred to as elastomer-modified thermoplastics. It is of interest to note... [Pg.260]

Vulcanisation can be effected by diamines, polyamines and lead compounds such as lead oxides and basic lead phosphite. The homopolymer vulcanisate is similar to butyl rubber in such characteristics as low air permeability, low resilience, excellent ozone resistance, good heat resistance and good weathering resistance. In addition the polyepichlorohydrins have good flame resistance. The copolymers have more resilience and lower brittle points but air impermeability and oil resistance are not so good. The inclusion of allyl glycidyl ether in the polymerisation recipe produces a sulphur-curable elastomer primarily of interest because of its better resistance to sour gas than conventional epichlorhydrin rubbers. [Pg.548]

Since this bloom is brittle, it is broken by flexing. Therefore, waxes only protect under static conditions. For serving conditions which involve continuous flexing, /j-phenylenediamines (A, A -alkyl-aryl derivatives) can be added. These chemical antiozonants scavenge the ozone before it reacts with the rubber. A barrier of ozonized products is created which protects both the rubber and antiozonant from further attack. However, p-phenylenediamines are staining compounds. Whenever colour is an important concern, blends of elastomers can be used elastomers loading should be higher than 30 phr to provide sufficient effectiveness. [Pg.646]

Reinforcing fillers (active) Fumed Silica (Si02) precipitated calcium carbonate (CaCOi) carbon black Thixotropic reinforcing agents (non-slump), adjustment of mechanical properties (cohesion) provide toughness to the elastomer as opposed to brittle materials. [Pg.701]

The homopolymers, which are formed from alkyl cyanoacrylate monomers, are inherently brittle. For applications which require a toughened adhesive, rubbers or elastomers can be added to improve toughness, without a substantial loss of adhesion. The rubbers and elastomers which have been used for toughening, include ethylene/acrylate copolymers, acrylonitrile/butadiene/styrene (ABS) copolymers, and methacrylate/butadiene/styrene (MBS) copolymers. In general, the toughening agents are incorporated into the adhesive at 5-20 wt.% of the monomer. [Pg.857]

Heterogeneous compatible blends of preformed elastomers and brittle plastics are also an important route for the development of blends of enhanced performance with respect to crack or impact resistance. Polycarbonate blends with preformed rubber particles of different sizes have been used to provide an insight into the impact properties and the fracture modes of these toughened materials. Izod impact strength of the blends having 5-7.5 wt% of rubber particles exhibits best overall product performance over a wide range temperature (RT to -40°C) [151-154]. [Pg.659]

Thermoplastic polymers, such as poly(styrene) may be filled with soft elastomeric particles in order to improve their impact resistance. The elastomer of choice is usually butadiene-styrene, and the presence of common chemical groups in the matrix and the filler leads to improved adhesion between them. In a typical filled system, the presence of elastomeric particles at a level of 50% by volume improves the impact strength of a brittle glassy polymer by a factor of between 5 and 10. [Pg.114]

After almost half a century of use in the health field, PU remains one of the most popular biomaterials for medical applications. Their segmented block copolymeric character endows them with a wide range of versatility in tailoring their physical properties, biodegradation character, and blood compatibility. The physical properties of urethanes can be varied from soft thermoplastic elastomers to hard, brittle, and highly cross-linked thermoset material. [Pg.236]

Among elastomers, artificial rubbers have replaced natural rabber for many uses because of their high resistance to chemical attack by ozone, an atmospheric pollutant. When ozone reacts with polymer chains, it breaks CUCn bonds and introduces additional cross-linking. Breaking 7r bonds causes the rabber to sofien, and cross-linking makes it more brittle. Both changes eventually lead to rupture of the polymer structure. [Pg.917]

When an elastomer sample is subjected to low temperatures, the brittle point is the highest temperature at which the sample breaks when subjected to a sharp blow. The brittle point is one indication of low temperature flexibility and is usually somewhat higher than the glass transition temperature. [Pg.15]

The flexibility of amorphous polymers is reduced drastically when they are cooled below a characteristic transition temperature called the glass transition temperature (Tg). At temperatures below Tg there is no ready segmental motion and any dimensional changes in the polymer chain are the result of temporary distortions of the primary covalent bonds. Amorphous plastics perform best below Tg but elastomers must be used above the brittle point, or they will act as a glass and be brittle and break when bent. [Pg.30]

Copolymerization allows the synthesis of an almost unlimited number of different products by variations in the nature and relative amounts of the two monomer units in the copolymer product. A prime example of the versatility of the copolymerization process is the case of polystyrene. More than 11 billion pounds per year of polystyrene products are produced annually in the United States. Only about one-third of the total is styrene homopolymer. Polystyrene is a brittle plastic with low impact strength and low solvent resistance (Sec. 3-14b). Copolymerization as well as blending greatly increase the usefulness of polystyrene. Styrene copolymers and blends of copolymers are useful not only as plastics but also as elastomers. Thus copolymerization of styrene with acrylonitrile leads to increased impact and solvent resistance, while copolymerization with 1,3-butadiene leads to elastomeric properties. Combinations of styrene, acrylonitrile, and 1,3-butadiene improve all three properties simultaneously. This and other technological applications of copolymerization are discussed further in Sec. 6-8. [Pg.465]

When polymer melts, rubbers, or elastomers are cooled down below Tg, they may freeze to glasses (noncrystalline amorphous phases). The rotations motions of the chain segments (micro-Brownian motions) are almost stopped now, and the transparent materials become stiff and (in most cases) brittle. [Pg.23]

Permeation (naturally permeability) of gas through materials such as rubber hoses, elastomer seals, etc. (unless these parts have become brittle and thus leaky ). [Pg.110]


See other pages where Elastomer brittleness is mentioned: [Pg.267]    [Pg.267]    [Pg.421]    [Pg.31]    [Pg.471]    [Pg.514]    [Pg.265]    [Pg.1127]    [Pg.238]    [Pg.245]    [Pg.327]    [Pg.479]    [Pg.93]    [Pg.96]    [Pg.243]    [Pg.135]    [Pg.148]    [Pg.356]    [Pg.383]    [Pg.740]    [Pg.335]    [Pg.361]    [Pg.371]    [Pg.16]    [Pg.99]    [Pg.578]    [Pg.159]    [Pg.333]    [Pg.39]    [Pg.224]    [Pg.303]    [Pg.363]    [Pg.48]    [Pg.150]   
See also in sourсe #XX -- [ Pg.188 ]




SEARCH



Brittle elastomers

Brittle-1

Brittleness

© 2024 chempedia.info