Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Effectively thin pellets

Diffusion effects can be expected in reactions that are very rapid. A great deal of effort has been made to shorten the diffusion path, which increases the efficiency of the catalysts. Pellets are made with all the active ingredients concentrated on a thin peripheral shell and monoliths are made with very thin washcoats containing the noble metals. In order to convert 90% of the CO from the inlet stream at a residence time of no more than 0.01 sec, one needs a first-order kinetic rate constant of about 230 sec-1. When the catalytic activity is distributed uniformly through a porous pellet of 0.15 cm radius with a diffusion coefficient of 0.01 cm2/sec, one obtains a Thiele modulus y> = 22.7. This would yield an effectiveness factor of 0.132 for a spherical geometry, and an apparent kinetic rate constant of 30.3 sec-1 (106). [Pg.100]

On the other hand, it has been argued that the resistance to heat transfer is effectively within a thin gas film enveloping the catalyst particle [10]. Thus, for the whole practical range of heat transfer coefficients and thermal conductivities, the catalyst particle may be considered to be at a uniform temperature. Any temperature increases arising from the exothermic nature of a reaction would therefore be across the fluid film rather than in the pellet interior. [Pg.163]

The optimal distribution of silver catalyst in a-Al203 pellets is investigated experimentally for the ethylene epoxidation reaction network, using a novel single-pellet reactor. Previous theoretical work suggests that a Dirac-delta type distribution of the catalyst is optimal. This distribution is approximated in practice by a step-distribution of narrow width. The effect of the location and width of the active layer on the conversion of ethylene and the selectivity to ethylene oxide, for various ethylene feed concentrations and reaction temperatures, is discussed. The results clearly demonstrate that for optimum selectivity, the silver catalyst should be placed in a thin layer at the external surface of the pellet. [Pg.410]

Because of the potential importance for industrial-scale catalysis, we decided to check (i) whether an influence of a semiconductor support on a metal catalyst was present also if the metal is not spread as a thin layer on the semiconductor surface but rather exists in form of small particles mixed intimately with a powder of the semiconductor, and (ii) whether a doping effect was present even then. To this end the nitrates of nickel, zinc (zinc oxide is a well-characterized n-type semiconductor) and of the doping element gallium (for increased n-type doping) or lithium (for decreased n-type character) were dissolved in water, mixed, heated to dryness, and decomposed at 250°-300°C. The oxide mixtures were then pelleted and sintered 4 hr at 800° in order to establish the disorder equilibrium of the doped zinc oxide. The ratio Ni/ZnO was 1 8 and the eventual doping amounted to 0.2 at % (75). [Pg.8]

Two runs at high CO2 concentrations (9.8 mole percent CO2/ N2/5A 1/4" and 13.2 mole percent C02/air/5A 1/8" LMS pellets), for which it was determined that effects of heat transfer could be very important, were run in a special column designed by F. W. Leavitt (developer of the MASC program) to simulate essentially adiabatic behavior. The column was constructed of thin-walled sheet metal and was 24.8 cm in diameter. Electric heating jackets placed in sections along the wall of the column and controlled by thermocouples placed at corresponding intervals along the centerline of the bed were used to maintain the wall at essentially the same temperature as the bed interior. [Pg.88]

This effect will be particularly emphasized at small values of the Thiele modulus where the intrinsic rate of reaction and the effective rate of diffusion assume the same order of magnitude. At large values of , the effectiveness factor again becomes inversely proportional to the Thiele modulus, as observed under isothermal conditions (Section 6.2.3.1). Then the reaction takes place only within a thin shell close to the external pellet surface. Here, controlled by the Arrhenius and Prater numbers, the temperature may be distinctly higher than at the external pellet surface, but constant further towards the pellet center. [Pg.339]

It was pointed out that diffusion effects are less severe for thin zeolite layers on monolithic substrates than for pellets, such as were used for performance comparison. Methanol partial pressure variations led to results similar to other work in which it has been found that lower pressures favor olefin formation. As the temperature is raised, light... [Pg.200]


See other pages where Effectively thin pellets is mentioned: [Pg.241]    [Pg.241]    [Pg.11]    [Pg.243]    [Pg.336]    [Pg.138]    [Pg.892]    [Pg.708]    [Pg.590]    [Pg.58]    [Pg.353]    [Pg.452]    [Pg.81]    [Pg.300]    [Pg.138]    [Pg.320]    [Pg.114]    [Pg.157]    [Pg.719]    [Pg.414]    [Pg.358]    [Pg.180]    [Pg.1072]    [Pg.1108]    [Pg.139]    [Pg.318]    [Pg.279]    [Pg.238]    [Pg.32]    [Pg.142]    [Pg.143]    [Pg.591]    [Pg.134]    [Pg.213]    [Pg.4075]    [Pg.81]    [Pg.31]    [Pg.120]    [Pg.534]    [Pg.429]    [Pg.356]    [Pg.708]    [Pg.336]   
See also in sourсe #XX -- [ Pg.241 ]




SEARCH



Thinning effect

© 2024 chempedia.info