Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Earth bismuth

T, Honma, Y, Benino, T. Fujiwara, R, Sato, T, Komatsu, New optical nonlinear crystallized glasses and YAG laser-induced crystalline dot formation in rare-earth bismuth borate system. Opt. Mat., 20, 27-33 (2002),... [Pg.565]

Physical Properties and Phase Identification in Yttrium—Alkaline Earth—Bismuth—Copper Oxide Systems... [Pg.145]

SPENCER ROE Yttrium—Alkaline Earth—Bismuth-Copper Oxide... [Pg.151]

Binary rare earth bismuth systems remain incompletely investigated. In two important reviews, the structures of individual phases were assessed (Yoshihara et al., 1975) and the... [Pg.3]

Ternary rare earth bismuth systems with an s-element as the third component are limited to those containing H, Li, and Mg. Table 3 lists crystallographic data for known compounds. Investigation of additional systems containing heavier alkali or alkaline earth metals would seem worthwhile. [Pg.10]

The rare earth bismuth chalcogenides are quite different from the other systems, and really belong in a separate category. Where structures have been resolved, these are found to be valence-precise compounds containing formally Bi " " and are expected to be semiconductors. [Pg.75]

This lead chapter reviews known rare-earth-bismuth phases, focusing on the composition and stractural data, but when available, physical properties are also given. The matter is organized... [Pg.523]

Gr. aktis, aktinos, beam or ray). Discovered by Andre Debierne in 1899 and independently by F. Giesel in 1902. Occurs naturally in association with uranium minerals. Actinium-227, a decay product of uranium-235, is a beta emitter with a 21.6-year half-life. Its principal decay products are thorium-227 (18.5-day half-life), radium-223 (11.4-day half-life), and a number of short-lived products including radon, bismuth, polonium, and lead isotopes. In equilibrium with its decay products, it is a powerful source of alpha rays. Actinium metal has been prepared by the reduction of actinium fluoride with lithium vapor at about 1100 to 1300-degrees G. The chemical behavior of actinium is similar to that of the rare earths, particularly lanthanum. Purified actinium comes into equilibrium with its decay products at the end of 185 days, and then decays according to its 21.6-year half-life. It is about 150 times as active as radium, making it of value in the production of neutrons. [Pg.157]

Radon-222 [14859-67-7] Rn, is a naturally occuriing, iaert, radioactive gas formed from the decay of radium-226 [13982-63-3] Ra. Because Ra is a ubiquitous, water-soluble component of the earth s cmst, its daughter product, Rn, is found everywhere. A major health concern is radon s radioactive decay products. Radon has a half-life of 4 days, decayiag to polonium-218 [15422-74-9] Po, with the emission of an a particle. It is Po, an a-emitter having a half-life of 3 min, and polonium-214 [15735-67-8] Po, an a-emitter having a half-life of 1.6 x lO " s, that are of most concern. Polonium-218 decays to lead-214 [15067-28A] a p-emitter haviag = 27 min, which decays to bismuth-214 [14733-03-0], a p-emitter haviag... [Pg.381]

Rubidium metal alloys with the other alkaU metals, the alkaline-earth metals, antimony, bismuth, gold, and mercury. Rubidium forms double haUde salts with antimony, bismuth, cadmium, cobalt, copper, iron, lead, manganese, mercury, nickel, thorium, and 2iac. These complexes are generally water iasoluble and not hygroscopic. The soluble mbidium compounds are acetate, bromide, carbonate, chloride, chromate, fluoride, formate, hydroxide, iodide. [Pg.278]

Other. Insoluble alkaline-earth metal and heavy metal stannates are prepared by the metathetic reaction of a soluble salt of the metal with a soluble alkah—metal stannate. They are used as additives to ceramic dielectric bodies (32). The use of bismuth stannate [12777-45-6] Bi2(Sn02)3 5H20, with barium titanate produces a ceramic capacitor body of uniform dielectric constant over a substantial temperature range (33). Ceramic and dielectric properties of individual stannates are given in Reference 34. Other typical commercially available stannates are barium stannate [12009-18-6] BaSnO calcium stannate [12013 6-6] CaSnO magnesium stannate [12032-29-0], MgSnO and strontium stannate [12143-34-9], SrSnO. ... [Pg.66]

Bismuth occurs ia the earth s cmst ia a concentration of approximately 0.1 ppm on the average. Higher concentrations of bismuth occur ia oceanic manganese nodules ia a range of 0.5 to 24 ppm (see Ocean rawmaterials). The next highest concentration of bismuth is found ia siUcic rock at 0.02 to 0.9 ppm (2). [Pg.122]

Bismuthides. Many intermetaUic compounds of bismuth with alkafl metals and alkaline earth metals have the expected formulas M Bi and M Bi, respectively. These compounds ate not saltlike but have high coordination numbers, interatomic distances similar to those found in metals, and metallic electrical conductivities. They dissolve to some extent in molten salts (eg, NaCl—Nal) to form solutions that have been interpreted from cryoscopic data as containing some Bi . Both the alkafl and alkaline earth metals form another series of alloylike bismuth compounds that become superconducting at low temperatures (Table 1). The MBi compounds are particularly noteworthy as having extremely short bond distances between the alkafl metal atoms. [Pg.127]

Cobalt is the thirtieth most abundant element on earth and comprises approximately 0.0025% of the earth s cmst (3). It occurs in mineral form as arsenides, sulfides, and oxides trace amounts are also found in other minerals of nickel and iron as substitute ions (4). Cobalt minerals are commonly associated with ores of nickel, iron, silver, bismuth, copper, manganese, antimony, and 2iac. Table 1 Hsts the principal cobalt minerals and some corresponding properties. A complete listing of cobalt minerals is given ia Reference 4. [Pg.369]

Bismuth. Bismuth 2-ethyIhexanoate [72877-97-5] is an auxiliary drier that has been promoted for drying under adverse conditions. Like rare earths, in some coatings it is reported to give better results than zirconium at low temperature and high humidity. [Pg.221]

Heating with the following solids, their fusions, or vapours (a) oxides, peroxides, hydroxides, nitrates, nitrites, sulphides, cyanides, hexacyano-ferrate(III), and hexacyanoferrate(II) of the alkali and alkaline-earth metals (except oxides and hydroxides of calcium and strontium) (b) molten lead, silver, copper, zinc, bismuth, tin, or gold, or mixtures which form these metals upon reduction (c) phosphorus, arsenic, antimony, or silicon, or mixtures which form these elements upon reduction, particularly phosphates, arsenates,... [Pg.95]

The reason for the ultramicrochemical test was to establish whether the bismuth phosphate would carry the plutonium at the concentrations that would exist at the Hanford extraction plant. This test was necessary because it did not seem logical that tripositive bismuth should be so efficient in carrying tetrapositive plutonium. In subsequent months there was much skepticism on this point and the ultramicrochemists were forced to make repeated tests to prove this point. Thompson soon showed that Pu(Vl) was not carried by bismuth phosphate, thus establishing that an oxidation-reduction cycle would be feasible. All the various parts of the bismuth-phosphate oxidation-reduction procedure, bulk reduction via cross-over to a rare earth fluoride oxidation-reduction step and final isolation by precipitation of plutonium (IV) peroxide were tested at the Hanford concentrations of... [Pg.25]

But first the synthesis had to come John was interested in reduced metal halides, particularly for the post-transition metals cadmium, galHum, and bismuth (his Ph.D. dissertation was on anhydrous aluminum halides and mixed halide intermediates, a good start for what was to come ). However, he was not yet actively interested in rare-earth metals and their remarkable solubility in their halides. But these elements lured him one floor below where Adrian Daane headed the metallurgy section of Spedding s empire. He knew how to produce rare-earth metals with high purity and in sufficient quantity and also how to handle tantalum containers. What if one gave it a tr/ and reduced some rare-earth metal halides (John insists that this term is used correctly) from their respective metals at high temperatures under appropriate conditions. [Pg.339]

When Z gets big enough, no number of neutrons is enough to stabilize the nucleus. Notice in Figure 2-20 that there are no stable nuclei above bismuth, Z — 83. Some elements with higher Z are found on Earth, notably radium (Z = 88), thorium (Z = 90), and uranium (Z = 92), but all such elements are unstable and eventually disintegrate into nuclei with Z < 83. Consequently, the set of stable nuclei, those that make up the world of normal chemistry and provide the material for all terrestrial chemical reactions, is a small subset of all possible nuclei. [Pg.90]

Uranium is not a very rare element. It is widely disseminated in nature with estimates of its average abundance in the Earth s crust varying from 2 to 4 ppm, close to that of molybdenum, tungsten, arsenic, and beryllium, but richer than such metals as bismuth, cadmium, mercury, and silver its crustal abundance is 2.7 ppm. The economically usable tenor of uranium ore deposits is about 0.2%, and hence the concentration factor needed to form economic ore deposits is about 750. In contrast, the enrichment factors needed to form usable ore deposits of common metals such as lead and chromium are as high as 3125 and 1750, respectively. [Pg.70]

The silver gray metal can be cut with a knife, although it only melts at 1545 °C (for comparison, iron 1538 °C). It is the rarest of the "rare earths", but is nevertheless more abundant than iodine, mercury, and silver. Thulium has few applications, especially because it is relatively expensive. The element occurs naturally as a single isotope, namely 169Tm (compare bismuth). The artificial, radioactive 170Tm is a transportable source of X-rays for testing materials. Occasionally used in laser optics and microwave technology. [Pg.147]

The delayed light emission as observed from the Bolonian stone is now classified as phosphorescence. We know now that these stones contain barium sulfate with traces of bismuth and manganese, and that the corresponding reducing process concerns the transformation of sulfate into sulfur. It is now well known that alkaline earth metal sulfates emit phosphorescence that strongly increases when traces of heavy metals are present. The so-called inorganic multi-component compounds phosphor and crystallophosphor are in fact polycrystalline substances containing traces of some ionic activators of luminescence. [Pg.3]

A aluminium B bismuth C copper D cadmium E rare earth F iron G magnesium ... [Pg.479]


See other pages where Earth bismuth is mentioned: [Pg.401]    [Pg.1]    [Pg.73]    [Pg.3]    [Pg.3]    [Pg.4]    [Pg.4]    [Pg.10]    [Pg.401]    [Pg.1]    [Pg.73]    [Pg.3]    [Pg.3]    [Pg.4]    [Pg.4]    [Pg.10]    [Pg.150]    [Pg.368]    [Pg.578]    [Pg.320]    [Pg.441]    [Pg.15]    [Pg.430]    [Pg.148]    [Pg.134]    [Pg.154]    [Pg.42]    [Pg.356]    [Pg.57]    [Pg.358]    [Pg.459]    [Pg.106]   
See also in sourсe #XX -- [ Pg.676 ]




SEARCH



© 2024 chempedia.info