Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dynamics, semiconductor

Small metal clusters are also of interest because of their importance in catalysis. Despite the fact that small clusters should consist of mostly surface atoms, measurement of the photon ionization threshold for Hg clusters suggest that a transition from van der Waals to metallic properties occurs in the range of 20-70 atoms per cluster [88] and near-bulk magnetic properties are expected for Ni, Pd, and Pt clusters of only 13 atoms [89] Theoretical calculations on Sin and other semiconductors predict that the stmcture reflects the bulk lattice for 1000 atoms but the bulk electronic wave functions are not obtained [90]. Bartell and co-workers [91] study beams of molecular clusters with electron dirfraction and molecular dynamics simulations and find new phases not observed in the bulk. Bulk models appear to be valid for their clusters of several thousand atoms (see Section IX-3). [Pg.270]

Many of the fiindamental physical and chemical processes at surfaces and interfaces occur on extremely fast time scales. For example, atomic and molecular motions take place on time scales as short as 100 fs, while surface electronic states may have lifetimes as short as 10 fs. With the dramatic recent advances in laser tecluiology, however, such time scales have become increasingly accessible. Surface nonlinear optics provides an attractive approach to capture such events directly in the time domain. Some examples of application of the method include probing the dynamics of melting on the time scale of phonon vibrations [82], photoisomerization of molecules [88], molecular dynamics of adsorbates [89, 90], interfacial solvent dynamics [91], transient band-flattening in semiconductors [92] and laser-induced desorption [93]. A review article discussing such time-resolved studies in metals can be found in... [Pg.1296]

Sachleben J R ef a/1998 Solution-state NMR studies of the surface structure and dynamics of semiconductor nanocrystals J. Phys. Chem. B 102 10 117... [Pg.2921]

Main memories almost exclusively consist of semiconductors on a siUcon basis in complementary metal oxide semiconductor technology (CMOS). The most important types are the pure read only memory (ROM) and the write/read memory (RAM = random access memory), which is available as S-RAM (static RAM) or as D-RAM (dynamic RAM). [Pg.138]

In the concepts developed above, we have used the kinematic approximation, which is valid for weak diffraction intensities arising from imperfect crystals. For perfect crystals (available thanks to the semiconductor industry), the diffraction intensities are large, and this approximation becomes inadequate. Thus, the dynamical theory must be used. In perfect crystals the incident X rays undergo multiple reflections from atomic planes and the dynamical theory accounts for the interference between these reflections. The attenuation in the crystal is no longer given by absorption (e.g., p) but is determined by the way in which the multiple reflections interfere. When the diffraction conditions are satisfied, the diffracted intensity ft-om perfect crystals is essentially the same as the incident intensity. The diffraction peak widths depend on 26 m and Fjjj and are extremely small (less than... [Pg.203]

Today dynamic SIMS is a standard technique for measurement of trace elements in semiconductors, high performance materials, coatings, and minerals. The main advantages of the method are excellent sensitivity (detection limit below 1 pmol mol ) for all elements, the isotopic sensitivity, the inherent possibility of measuring depth profiles, and the capability of fast direct imaging and 3D species distribution. [Pg.106]

Ion implantation is a method commonly used for doping semiconductors. Because the concentrations of the dopants (mostly B and P) are very low, a dynamic range of more than five orders of magnitude is often necessary. Measurement of is more difficult than that of B, because of the mass interference of °Si H. High mass resolution of m/Am = 5000, or an energy offset of 300 V, is necessary. [Pg.119]

Today, dynamic random-access memories (DRAMs) are transistor/capacitor-based semiconductor devices, with access times measured in nanoseconds and very low costs. Core memories were made of magnetic rings not less than a millimetre in diameter, so that a megabyte of memory would have occupied square metres, while a corresponding DRAM would occupy a few square millimetres. Another version of a DRAM is the read-only memory (ROM), essential for the operation of any computer, and unalterable from the day it is manufactured. We see that developments in magnetic memories involved dramatic reductions in cost and... [Pg.286]

Recent developments are leading toward other materials like silica gel or polymers. Certain types of semiconductors are also used as resistive probes. The measurement range of resistive sensors varies depending on materials used. It can be as wide as 0-99% RH. The dynamics are fast enough for normal ventilation applications and the stability of good resistive sensors is high. This does not reduce the need for calibration, but the intervals of successive calibrations can be extended. [Pg.1143]

M. Menon and R. E. AUen, New technique for molecular-dynamics computer simulations Hellmann- Feynman theorem and subspace Hamiltonian approach , Phys. Rev. B33 7099 (1986) Simulations of atomic processes at semiconductor surfaces General method and chemisorption on GaAs(llO) , ibid B38 6196 (1988). [Pg.266]

Another class of devices used to control the voltage is operated using powered electronic switches to continuously adjust the capacitance and/or inductance in a substation to keep the voltage at precisely the voltage desired. These devices are relatively new in deployment, having been developed with the advent of inexpensive and robust power semiconductor components. These devices are part of a group broadly known as FACTS (Flexible AC Transmission System) devices and include static var compensators, static synchronous compensators, and dynamic voltage restorers. [Pg.432]

Modern techniques use thin-film resistors deposited directly on the area and semiconductor units are available which are considerably more sensitive than the resistive type. Dynamic measurements can also be made. The change in resistance unbalances the bridge, causing a voltage to appear across the detector terminals. This voltage is then amplified and applied to a CRO or the information can be stored digitally for future retrieval. [Pg.244]

The simplified theory allows the time-dependent wave function to be calculated rapidly for any specified laser field. However, controlling the dynamics of the charge carriers requires the answer to an inverse question [18-22]. That is, given a specific target or objective, what is the laser field that best drives the system to that objective Several methods have been developed to address this question. This section sketches one method, valid in the weak response (perturbative) regime in which most experiments on semiconductors are performed. [Pg.252]

In this brief review we illustrated on selected examples how combinatorial computational chemistry based on first principles quantum theory has made tremendous impact on the development of a variety of new materials including catalysts, semiconductors, ceramics, polymers, functional materials, etc. Since the advent of modem computing resources, first principles calculations were employed to clarify the properties of homogeneous catalysts, bulk solids and surfaces, molecular, cluster or periodic models of active sites. Via dynamic mutual interplay between theory and advanced applications both areas profit and develop towards industrial innovations. Thus combinatorial chemistry and modem technology are inevitably intercoimected in the new era opened by entering 21 century and new millennium. [Pg.11]

Duonghung D, Ramsden J, Gratzel M (1982) Dynamics of interfacial electron-transfer processes in colloidal semiconductor systems. J Am Chem Soc 104 2977-2985... [Pg.302]


See other pages where Dynamics, semiconductor is mentioned: [Pg.472]    [Pg.325]    [Pg.305]    [Pg.538]    [Pg.472]    [Pg.325]    [Pg.305]    [Pg.538]    [Pg.1298]    [Pg.1548]    [Pg.2872]    [Pg.299]    [Pg.443]    [Pg.88]    [Pg.132]    [Pg.138]    [Pg.343]    [Pg.513]    [Pg.78]    [Pg.76]    [Pg.261]    [Pg.135]    [Pg.506]    [Pg.176]    [Pg.184]    [Pg.250]    [Pg.251]    [Pg.164]    [Pg.9]    [Pg.11]    [Pg.291]    [Pg.375]    [Pg.266]    [Pg.283]    [Pg.314]   
See also in sourсe #XX -- [ Pg.251 , Pg.252 ]




SEARCH



© 2024 chempedia.info