Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Droplet size evaporation

The sample to be analyzed can be dissolved in an organic solvent, xylene or methylisobutyl ketone. Generally, for reasons of reproducibility and because of matrix effects (the surroundings affect the droplet size and therefore the effectiveness of the nebulization process), it is preferable to mineralize the sample in H2SO4, evaporate it and conduct the test in an aqueous environment. [Pg.34]

The nebulization concept has been known for many years and is commonly used in hair and paint spays and similar devices. Greater control is needed to introduce a sample to an ICP instrument. For example, if the highest sensitivities of detection are to be maintained, most of the sample solution should enter the flame and not be lost beforehand. The range of droplet sizes should be as small as possible, preferably on the order of a few micrometers in diameter. Large droplets contain a lot of solvent that, if evaporated inside the plasma itself, leads to instability in the flame, with concomitant variations in instrument sensitivity. Sometimes the flame can even be snuffed out by the amount of solvent present because of interference with the basic mechanism of flame propagation. For these reasons, nebulizers for use in ICP mass spectrometry usually combine a means of desolvating the initial spray of droplets so that they shrink to a smaller, more uniform size or sometimes even into small particles of solid matter (particulates). [Pg.106]

Atomization. Droplet heatup and evaporation calculations can be done for any droplet size, but are most often carried out to reflect the behavior of a mean-sized droplet. The finer the droplet, the less time required for the various steps in the destmction of the waste. [Pg.57]

Droplet trajectories for limiting cases can be calculated by combining the equations of motion with the droplet evaporation rate equation to assess the likelihood that drops exit or hit the wall before evaporating. It is best to consider upper bound droplet sizes in addition to the mean size in these calculations. If desired, an instantaneous value for the evaporation rate constant may also be used based on an instantaneous Reynolds number calculated not from the terminal velocity but at a resultant velocity. In this case, equation 37 is substituted for equation 32 ... [Pg.57]

The model assumes that liquid evaporation is always the rate controlling step. At some point the model must fail, since as droplet size approaches zero the predicted MIE approaches zero rather than the MIE of the vapor in air. In practice, droplets having diameters less than 10-40 /rm completely evaporate ahead of the flame and burn as vapor (5-1.3). The model also predicts that the MIE continuously decreases as equivalence ratio is increased, although as discussed above, combustion around droplets is not restrained by the overall stoichiometry and naturally predominates at the stoichiometric concentration. It is recommended that the model be applied only to droplet diameters above about 20/rm and equivalence ratios less than about one. [Pg.211]

As mentioned previously, this detector has been claimed to be universal, i.e., it has been reported that the response of the ELSD is not a function of the nature of the solute. Although this is not, strictly speaking, true, the detector is almost universal. The detector functions by nebulizing column effluent into droplets, which are evaporated in a heated gas stream. A droplet of evaporate, containing some solvent, remains. Light of a wavelength considerably smaller than the evaporate particles, which are 5 to 15 pm in size,161... [Pg.343]

The surface temperature of the droplet, 7 v. must first be solved using Eqs. (3) and (4), then the value ofB can be determined and substituted into Eq. (2). As an example, these equations were solved for a number of initial droplet sizes, liquids, and gas temperatures. The results are presented in Table 1 for the case of liquid evaporation into dry air (ybuik = 0). The results in Table 1, along with the form of Eq. (2), indicate that the time to evaporate... [Pg.341]

Groendes and Mesler (1982) studied the saturated film boiling impacts of a 4.7 mm water droplet on a quartz surface of 460 °C. The fluctuation of the surface temperature was detected using a fast-response thermometer. The maximal temperature drop of the solid surface during a droplet impact was reported to be about 20 °C. Considering the lower thermal diffusivity of quartz, this temperature drop implies a low heat-transfer rate on the surface. Biance et al. (2003) studied the steady-state evaporation of the water droplet on a superheated surface and found that for the nonwetting contact condition, the droplet size cannot exceed the capillary length. [Pg.29]

The particle beam interface [55] borrowed and built upon some of the key elements and concepts of its predecessors. Eluent from the HPLC was nebulized into a spray of small droplets by a flow of helium. The spray of droplets entered a heated chamber where evaporative processes further reduced the droplet size creating an aerosol. The next step of the process involved the spraying of the aerosol (i.e., the... [Pg.377]

Solution atomization involves dissolution of a relatively nonvolatile liquid (solute) in a volatile solvent and atomization of the solution. During the atomization, the solvent material will evaporate in surrounding medium (air), leaving only nucleus droplets of the nonvolatile solute. The final droplet size is a function of the initial droplet size, the mass concentration of the solute, and the density ratio of the solution to the solute. The limitation of this technique lies in that it requires the dissolution of the liquid to be dispersed in a solvent. [Pg.63]

Recently, Razumovskid441 studied the shape of drops, and satellite droplets formed by forced capillary breakup of a liquid jet. On the basis of an instability analysis, Teng et al.[442] derived a simple equation for the prediction of droplet size from the breakup of cylindrical liquid jets at low-velocities. The equation correlates droplet size to a modified Ohnesorge number, and is applicable to both liquid-in-liquid, and liquid-in-gas jets of Newtonian or non-Newtonian fluids. Yamane et al.[439] measured Sauter mean diameter, and air-entrainment characteristics of non-evaporating unsteady dense sprays by means of an image analysis technique which uses an instantaneous shadow picture of the spray and amount of injected fuel. Influences of injection pressure and ambient gas density on the Sauter mean diameter and air entrainment were investigated parametrically. An empirical equation for the Sauter mean diameter was proposed based on a dimensionless analysis of the experimental results. It was indicated that the Sauter mean diameter decreases with an increase in injection pressure and a decrease in ambient gas density. It was also shown that the air-entrainment characteristics can be predicted from the quasi-steady jet theory. [Pg.257]

In order to obtain the solution desired, a value of Ts is assumed, the vapor pressure of A is determined from tables, and mAs is calculated from Eq. (6.98). This value of mAs and the assumed value of Ts are inserted in Eq. (6.97). If this equation is satisfied, the correct Ts is chosen. If not, one must reiterate. When the correct value of Ts and mAs are found, BT or BM are determined for the given initial conditions Tx or mAco. For fuel combustion problems, mAcc is usually zero however, for evaporation, say of water, there is humidity in the atmosphere and this humidity must be represented as mAco. Once BT and BM are determined, the mass evaporation rate is determined from Eq. (6.87) for a fixed droplet size. It is, of course, much preferable to know the evaporation coefficient (5 from which the total evaporation time can be determined. Once B is known, the evaporation coefficient can be determined readily, as will be shown later. [Pg.346]

Adapting the evaporative light scattering device (ELSD) to pHPLC was investigated by Gaudin et al. Quantitative analysis by ELSD is often hindered by nonlinearity however, reduction of the flow rate, resulting in better homogeneity of droplet size distribution, has increased the linearity of the response with ELSD. Despite the predictable effect on droplet size in relation to the reduction of the inner diameter of the capillary inside the nebulizer, ELSD is relatively simple to adapt to micro/ capillary EC. ... [Pg.88]

FIGURE 7.13 Schematic of an evaporative light scattering detector. The three stages are nebulization, in which column effluent is aerosolized evaporation, in which the mobile phase is vaporized and optical detection, in which the light scattering of the residual solute particles is recorded. Some detectors also include an obstacle in the flow path for droplet discrimination, which leads to a more homogenous distribution of droplet sizes. [Pg.226]


See other pages where Droplet size evaporation is mentioned: [Pg.148]    [Pg.57]    [Pg.525]    [Pg.272]    [Pg.111]    [Pg.238]    [Pg.97]    [Pg.339]    [Pg.62]    [Pg.27]    [Pg.148]    [Pg.217]    [Pg.239]    [Pg.332]    [Pg.334]    [Pg.340]    [Pg.343]    [Pg.346]    [Pg.398]    [Pg.402]    [Pg.403]    [Pg.408]    [Pg.409]    [Pg.447]    [Pg.58]    [Pg.253]    [Pg.13]    [Pg.17]    [Pg.57]    [Pg.64]    [Pg.66]    [Pg.66]    [Pg.68]    [Pg.121]    [Pg.154]    [Pg.340]    [Pg.226]   
See also in sourсe #XX -- [ Pg.17 ]




SEARCH



Droplet size

Evaporating droplets

© 2024 chempedia.info