Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Droplet delivery

Droplet delivery from an airblast nebulizer is governed by the surface tension, density and viscosity of the fluid, and the applied pressure, which can be passive or forced. Droplet breakup is illustrated in Fig. 6. Droplets form during this breakup at a critical Weber number (We) ... [Pg.491]

Fig. 6 (A) Droplet formation. (B) Droplet delivery from an airblast nebulizer. Fig. 6 (A) Droplet formation. (B) Droplet delivery from an airblast nebulizer.
For the IFB plant the main advantage lies in the reduction of the inlet temperature, mainly by saturating the air with a very fine spray of water droplets [13]. This, in itself, results in an increased power output, but it is evident that the water may continue to evaporate within the compressor, resulting in a lowering of the compressor delivery temperature. A remarkable result observed by Utamura is an increase of some 8% in power output for only a small water mass flow (about 1% of air mass flow). However, the compressor performance may be adversely affected as the stages become mismatched [14], even for the small water quantities injected. [Pg.103]

A final important class of composite materials is the composite hquids. Composite liquids are highly stmctured fluids based either on particles or droplets in suspension, surfactants, liquid ciystalhne phases, or other macromolecules. A number of composite liquids are essential to the needs of modem industiy and society because they exhibit properties important to special end uses. Examples include lubricants, hydraulic traction fluids, cutting fluids, and oil-drilling muds. Paints, coatings, and adhesives may also be composite liquids. Indeed, composite hquids are valuable in any case where a well-designed liquid state is absolutely essential for proper delivery and action. [Pg.82]

The amount of added water required for desalting may be minimized by adding a chemical emulsion breaker to the crude that is capable of displacing the surface-active components from the brine droplets. Quatemized carboxylic-sulfonic acid salts, shown in Figure 22-9, are useful for desalting [1791]. Preferably, the chemical emulsion breaker is used in combination with a delivery solvent, such as diethylene glycol monobutyl ether. [Pg.340]

The factors governing lung deposition may be divided into those related to the physicochemical properties of the droplets or particles being delivered, the mechanical aspects of aerosol dispersion usually associated with the delivery device, and the physiological and anatomical considerations associated with the biology of the lungs. [Pg.482]

Before discussing the three categories of delivery device, the nature of the emitted aerosol will be considered. Droplet formation may be characterized in terms of the nature of the propulsive force and the liquid being dispersed, and this topic is dealt with for specific situations in the following sections. However, dry particles, which are delivered from suspension in pMDIs or from DPIs alone or from a blend, must be prepared in respirable sizes. The production of respirable aerosol particles has traditionally been achieved by micronization of the drug [25]. This... [Pg.487]

Performance of nebulizers is not measured in the same manner as pMDIs and DPIs. Since the drug solution is not supplied with the device, the time scale of compatibility is much smaller. Droplet size and distribution and dose delivery are, however, very important. [Pg.493]

The manifestation of through-life evaluation, which is important to these devices, is the delivery of a single dose. The emitted dose and droplet size may vary from the beginning to the end of the delivery period. [Pg.493]

Inertial impaction is the method of choice for evaluating particle or droplet size delivery from pharmaceutical aerosol systems. This method lends itself readily to theoretical analysis, ft has been evaluated in general terms [39] and for specific impactors [40]. Inertial impaction employs Stokes law to determine aerodynamic diameter of particles being evaluated. This has the advantage of incorporating shape and density effects into a single term. [Pg.494]

Drug delivery to the respiratory tract has been characterized in the past decade by an increase in knowledge of drug droplet or particle manufacture, behavior, aerosol dispersion, lung deposition and clearance. The number of diseases for which aerosol therapy may be applicable has increased dramatically. The pharmaceutical scientist is no longer limited to pulmonary diseases as therapeutic targets. Substantial progress has been made in every area of pharmaceutical aerosol science, and it is anticipated that this will ultimately lead to many new therapies. [Pg.499]

Scale-up of gas atomizers is difficult and it requires the use of higher gas-to-melt mass flow rate ratio to maintain the same droplet size. The scale-up may also cause some complex phenomena to occur, such as the disappearance of the prefilming effect in close-coupled atomizers, the generation of turbulence in melt flow within delivery nozzle, and change in atomization mechanisms. [Pg.87]

A limited number of empirical correlations have been developed for metal droplet sizes generated by water atomization, as listed in Table 4.18. In these correlations p is a system-specific constant, is the atomizing angle, i.e., angle between water nozzle axis and metal delivery nozzle axis, A is a proportional constant specific to atomizer type, melt type and melt temperature, n is a parameter depending on atomizer type, APw is the water pressure, Uw is the water velocity, and mw is the mass flow rate of water. [Pg.289]


See other pages where Droplet delivery is mentioned: [Pg.77]    [Pg.2760]    [Pg.1667]    [Pg.305]    [Pg.77]    [Pg.2760]    [Pg.1667]    [Pg.305]    [Pg.519]    [Pg.220]    [Pg.111]    [Pg.254]    [Pg.62]    [Pg.386]    [Pg.131]    [Pg.166]    [Pg.58]    [Pg.60]    [Pg.81]    [Pg.211]    [Pg.277]    [Pg.107]    [Pg.380]    [Pg.68]    [Pg.92]    [Pg.183]    [Pg.187]    [Pg.282]    [Pg.349]    [Pg.350]    [Pg.354]    [Pg.355]    [Pg.358]    [Pg.363]   


SEARCH



© 2024 chempedia.info