Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Double optical

William E. Colley, Chui Fan Liu and J. C. Bailar, Jr., The Stereochemistry of Complex Inorganic Compounds. XXIII. Double Optical Isomerism and Optical-Geometric Isomerism in Cobalt(III) Complexes, J. Am. Chem. Soc. 81 4189 (1959). [Pg.346]

A much better way would be to use phase contrast, rather than attenuation contrast, since the phase change, due to changes in index of refraction, can be up to 1000 times larger than the change in amplitude. However, phase contrast techniques require the disposal of monochromatic X-ray sources, such as synchrotrons, combined with special optics, such as double crystal monochromatics and interferometers [2]. Recently [3] it has been shown that one can also obtain phase contrast by using a polychromatic X-ray source provided the source size and detector resolution are small enough to maintain sufficient spatial coherence. [Pg.573]

SHG Optical second-harmonic generation [95, 96] A high-powered pulsed laser generates frequency-doubled response due to the asymmetry of the interface Adsorption and surface coverage rapid surface changes... [Pg.318]

Thus we are challenged by the problem of measuring a small signal against the background of one much stronger. The problem is usually solved by one of two means (a) lock-in-amplifier detection and (b) a boxcar type of detection (to some extent we can include double-input optical multichannel detection in this category). [Pg.3028]

Por IR-Raman experiments, a mid-IR pump pulse from an OPA and a visible Raman probe pulse are used. The Raman probe is generated either by frequency doubling a solid-state laser which pumps the OPA [16], or by a two-colour OPA [39]. Transient anti-Stokes emission is detected with a monocliromator and photomultiplier [39], or a spectrograph and optical multichannel analyser [40]. [Pg.3039]

Comments The diene A is symmetrical so it doesn t matter which double bond is attacked by the carbene. On the other hand, it may be difficult to stop carbene addition to the second double bond. The only control over the stereochemistry will be that the trans compound we want is more stable. Japanese chemists have recently synthesised optically active trans chrysanthemic acid by this route (Tetrahedron Letters. 1977, 2599). [Pg.115]

Nonlinear optical properties are of interest due to their potential usefulness for unique optical devices. Some of these applications are frequency-doubling devices, optical signal processing, and optical computers. [Pg.256]

A more eflicient and general synthetic procedure is the Masamune reaction of aldehydes with boron enolates of chiral a-silyloxy ketones. A double asymmetric induction generates two new chiral centres with enantioselectivities > 99%. It is again explained by a chair-like six-centre transition state. The repulsive interactions of the bulky cyclohexyl group with the vinylic hydrogen and the boron ligands dictate the approach of the enolate to the aldehyde (S. Masamune, 1981 A). The fi-hydroxy-x-methyl ketones obtained are pure threo products (threo = threose- or threonine-like Fischer formula also termed syn" = planar zig-zag chain with substituents on one side), and the reaction has successfully been applied to macrolide syntheses (S. Masamune, 1981 B). Optically pure threo (= syn") 8-hydroxy-a-methyl carboxylic acids are obtained by desilylation and periodate oxidation (S. Masamune, 1981 A). Chiral 0-((S)-trans-2,5-dimethyl-l-borolanyl) ketene thioketals giving pure erythro (= anti ) diastereomers have also been developed by S. Masamune (1986). [Pg.62]

Acetoxy-l,7-octadiene (40) is converted into l,7-octadien-3-one (124) by hydrolysis and oxidation. The most useful application of this enone 124 is bisannulation to form two fused six-membered ketonesfl 13], The Michael addition of 2-methyl-1,3-cyclopentanedione (125) to 124 and asymmetric aldol condensation using (5)-phenylalanine afford the optically active diketone 126. The terminal alkene is oxidi2ed with PdCl2-CuCl2-02 to give the methyl ketone 127 in 77% yield. Finally, reduction of the double bond and aldol condensation produce the important intermediate 128 of steroid synthesis in optically pure form[114]. [Pg.442]

The method was applied to the synthesis of (-t-)-l9-nortestosterone by the following sequence of reactions. Michael addition of the bisannulation reagent 124 to the optically active keto ester 129 and decarboxylation afforded 130, and subsequent aldol condensation gave 131. Selective Pd-catalyzed oxidation of the terminal double bond afforded the diketone 132 in 78% yield. Reduction of the double bond and aldol condensation gave ( + )-19-nortestosterone (133)[114]. [Pg.442]

The only example involving the 4-5 double bond in a 1-3 dipolar addition is given by the ozonolysis of the optically active 2-aminothiazOle (176) reported by Lardicci et al. (Scheme 112) (17). [Pg.71]

Optically inactive starting materials can give optically active products only if they are treated with an optically active reagent or if the reaction is catalyzed by an optically active substance The best examples are found m biochemical processes Most bio chemical reactions are catalyzed by enzymes Enzymes are chiral and enantiomerically homogeneous they provide an asymmetric environment m which chemical reaction can take place Ordinarily enzyme catalyzed reactions occur with such a high level of stereo selectivity that one enantiomer of a substance is formed exclusively even when the sub strate is achiral The enzyme fumarase for example catalyzes hydration of the double bond of fumaric acid to malic acid m apples and other fruits Only the S enantiomer of malic acid is formed m this reaction... [Pg.299]

Infrared instruments using a monochromator for wavelength selection are constructed using double-beam optics similar to that shown in Figure 10.26. Doublebeam optics are preferred over single-beam optics because the sources and detectors for infrared radiation are less stable than that for UV/Vis radiation. In addition, it is easier to correct for the absorption of infrared radiation by atmospheric CO2 and 1420 vapor when using double-beam optics. Resolutions of 1-3 cm are typical for most instruments. [Pg.393]

Atomic absorption spectrophotometers (Figure 10.37) are designed using either the single-beam or double-beam optics described earlier for molecular absorption spectrophotometers (see Figures 10.25 and 10.26). There are, however, several important differences that are considered in this section. [Pg.412]

Double-focusing forward geometry ion optics is a combination in which the ESA is placed before the magnet, as shown in Figure 24.5. [Pg.179]

Figure 9.22 illustrates how a CARS experiment might be carried out. In order to vary (vj — V2) in Equation (9.18) one laser wavenumber, Vj, is fixed and V2 is varied. Here, Vj is frequency-doubled Nd YAG laser radiation at 532 nm, and the V2 radiation is that of a dye laser which is pumped by the same Nd YAG laser. The two laser beams are focused with a lens L into the sample cell C making a small angle 2a with each other. The collimated CARS radiation emerges at an angle 3 a to the optic axis, is spatially filtered from Vj and V2... [Pg.367]

A particular point of interest included in these hehcal complexes concerns the chirality. The heUcates obtained from the achiral strands are a racemic mixture of left- and right-handed double heUces (Fig. 34) (202). This special mode of recognition where homochiral supramolecular entities, as a consequence of homochiral self-recognition, result from racemic components is known as optical self-resolution (203). It appears in certain cases from racemic solutions or melts (spontaneous resolution) and is often quoted as one of the possible sources of optical resolution in the biological world. On the other hand, the more commonly found process of heterochiral self-recognition gives rise to a racemic supramolecular assembly of enantio pairs (204). [Pg.194]

When used for superresolution, the laser beam is incident on b, which hides the domains in s. During read-out, b is heated and the domains in s are copied to b. The optical system sees only the overlap area between the laser spot and the temperature profile which is lagging behind, so that the effective resolution is increased. Experimentally it is possible to double the linear read-out resolution, so that a four times higher area density of the domains can be achieved when the higher resolution is also exploited across the tracks. At a domain distance of 0.6 pm, corresponding to twice the optical cutoff frequency, a SNR of 42 dB has been reached (82). [Pg.148]

To efficiendy drive the development of improved substrate materials, the limiting values of birefringence have to be known this is especially tme for WORM and EOD(MOR) substrate disks. These limit values were laid down by the ANSI (American National Standard Institute) Technical Standard Committee (186—188). For 5.25 in. WORM disks, the ANSI document X 3 B 11/88-144 recommends a maximum LEP value of 9% this corresponds to an optical path difference perpendicular to the plane of the disk of not more than 80 nm/mm (double path). For 5.25 in. EOD(MOR) disks, more stringent conditions apply (ANSI-document X 3 B 11/88-049), which also allow calculation of the allowed range. [Pg.156]


See other pages where Double optical is mentioned: [Pg.82]    [Pg.111]    [Pg.361]    [Pg.77]    [Pg.175]    [Pg.186]    [Pg.334]    [Pg.1195]    [Pg.346]    [Pg.638]    [Pg.55]    [Pg.82]    [Pg.111]    [Pg.361]    [Pg.77]    [Pg.175]    [Pg.186]    [Pg.334]    [Pg.1195]    [Pg.346]    [Pg.638]    [Pg.55]    [Pg.288]    [Pg.57]    [Pg.1969]    [Pg.1971]    [Pg.1973]    [Pg.2966]    [Pg.36]    [Pg.48]    [Pg.443]    [Pg.289]    [Pg.391]    [Pg.422]    [Pg.178]    [Pg.179]    [Pg.252]    [Pg.215]    [Pg.13]    [Pg.119]    [Pg.302]   
See also in sourсe #XX -- [ Pg.559 ]




SEARCH



Double resonance optical radio-frequency

Double resonance technique, optical

Double-beam optics

Microwave optical double resonance spectroscopy

Microwave-Optical Double-Resonance Polarization Spectroscopy

Microwave-optical double

Microwave-optical double resonance

Microwave/optical double resonance polarisation

Microwave/optical double resonance principles

OPTICAL DOUBLE RESONANCE EXPERIMENTS

Optical Double-Resonance and Level-Crossing Experiments with Laser Excitation

Optical Pumping and Double-Resonance Techniques

Optical activity compounds with double bonds

Optical double resonance

Optical double resonance light modulation

Optical double resonance measurements

Optical double resonance sensitivity

Optical double resonance spectroscopies

Optical frequency doubling, molecular

Optical properties, layered double

Optical systems double-beam optics

Optical-RF Double-Resonance Technique

Optics, double-focusing

Radiative lifetimes optical double resonance

Radiofrequency-optical double resonance spectroscopy

Spectroscopy double-beam optics

Spectroscopy optical radiofrequency double

© 2024 chempedia.info