Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Double coherence

All samples were purified either by column chromatography or by TLC prior to being used. The solvents were distilled and stored over anhydrous potassium carbonate to remove any acid. The excitation source was a frequency-doubled Coherent Antares 76s NdiYAG laser routed through a variable beam splitter to pump a cavity-dumped dye laser. The instrument response function (about 35 ps) was measured at the excitation wavelength (590 or 650 nm) for each decay experiment with a Ludox AS-40 suspension under the same conditions as the sample. [Pg.198]

A much better way would be to use phase contrast, rather than attenuation contrast, since the phase change, due to changes in index of refraction, can be up to 1000 times larger than the change in amplitude. However, phase contrast techniques require the disposal of monochromatic X-ray sources, such as synchrotrons, combined with special optics, such as double crystal monochromatics and interferometers [2]. Recently [3] it has been shown that one can also obtain phase contrast by using a polychromatic X-ray source provided the source size and detector resolution are small enough to maintain sufficient spatial coherence. [Pg.573]

In (a), two photon waves combine to give a new waveform, which has the same appearance and frequency as the initial separate waves. The photons are said to be coherent, and the amplitude of the waves (light intensity) is simply doubled. In (b), the two photon waves are shown out of step in time (incoherent). Addition of the two waveforms does not lead to a doubling of amplitude, and the new waveform is more complex, composed of a doubled overlapping frequency. In (c), the two waveforms are completely out of step (out of phase) and completely cancel each other, producing darkness rather than light (an interference phenomenon). [Pg.121]

Coherent anti-Stokes Raman scatttering, or CARS as it is usually known, depends on the general phenomenon of wave mixing, as occurs, for example, in a frequency doubling crystal (see Section 9.1.6). In that case three-wave mixing occurs involving two incident waves of wavenumber v and the outgoing wave of wavenumber 2v. [Pg.367]

Although the natural abundance of nitrogen-15 [14390-96-6] leads to lower sensitivity than for carbon-13, this nucleus has attracted considerable interest in the area of polypeptide and protein stmcture deterrnination. Uniform enrichment of is achieved by growing protein synthesi2ing cells in media where is the only nitrogen source. reverse shift correlation via double quantum coherence permits the... [Pg.405]

Aside from merely calculational difficulties, the existence of a low-temperature rate-constant limit poses a conceptual problem. In fact, one may question the actual meaning of the rate constant at r = 0, when the TST conditions listed above are not fulfilled. If the potential has a double-well shape, then quantum mechanics predicts coherent oscillations of probability between the wells, rather than the exponential decay towards equilibrium. These oscillations are associated with tunneling splitting measured spectroscopically, not with a chemical conversion. Therefore, a simple one-dimensional system has no rate constant at T = 0, unless it is a metastable potential without a bound final state. In practice, however, there are exchange chemical reactions, characterized by symmetric, or nearly symmetric double-well potentials, in which the rate constant is measured. To account for this, one has to admit the existence of some external mechanism whose role is to destroy the phase coherence. It is here that the need to introduce a heat bath arises. [Pg.20]

As seen from this table, the WKB approximation is reasonably accurate even for very shallow potentials. At 7 = 0 the hindered rotation is a coherent tunneling process like that studied in section 2.3 for the double well. If, for instance, the system is initially prepared in one of the wells, say, with cp = 0, then the probability to find it in one of the other wells is P( jn, t) = 5sin (2Ar), while the survival probability equals 1 — sin ( Ar). The transition amplitude A t), defined as P( + t) = A t), is connected with the tunneling frequency by... [Pg.119]

It turns out that, in the CML, the local temporal period-doubling yields spatial domain structures consisting of phase coherent sites. By domains, we mean physical regions of the lattice in which the sites are correlated both spatially and temporally. This correlation may consist either of an exact translation symmetry in which the values of all sites are equal or possibly some combined period-2 space and time symmetry. These coherent domains are separated by domain walls, or kinks, that are produced at sites whose initial amplitudes are close to unstable fixed points of = a, for some period-rr. Generally speaking, as the period of the local map... [Pg.390]

ESO VLT/Max Planck CW Dye Laser. The MPI is developing a CW dye laser for deployment on one ESO 8-m VLT telescope in 2004 (Eig. 13). The oscillator is a Coherent 899 ring dye laser, with a 2-5 W output, pumped by a 10 W, Coherent Verdi frequency-doubled Nd YAG laser. The beam is amphfied in a four-pass amphfier with 4 high velocity dye jets pumped with 4 10 W Verdi lasers. The system utihzes Rhodamine 6G in ethylene glycol however, because of the high pump power, the dye degrades quickly, and must... [Pg.226]

Figure 1.45 Coherence transfer pathways in 2D NMR experiments. (A) Pathways in homonuclear 2D correlation spectroscopy. The first 90° pulse excites singlequantum coherence of order p= . The second mixing pulse of angle /3 converts the coherence into detectable magnetization (p= —1). (Bra) Coherence transfer pathways in NOESY/2D exchange spectroscopy (B b) relayed COSY (B c) doublequantum spectroscopy (B d) 2D COSY with double-quantum filter (t = 0). The pathways shown in (B a,b, and d) involve a fixed mixing interval (t ). (Reprinted from G. Bodenhausen et al, J. Magn. Resonance, 58, 370, copyright 1984, Rights and Permission Department, Academic Press Inc., 6277 Sea Harbor Drive, Orlando, Florida 32887.)... Figure 1.45 Coherence transfer pathways in 2D NMR experiments. (A) Pathways in homonuclear 2D correlation spectroscopy. The first 90° pulse excites singlequantum coherence of order p= . The second mixing pulse of angle /3 converts the coherence into detectable magnetization (p= —1). (Bra) Coherence transfer pathways in NOESY/2D exchange spectroscopy (B b) relayed COSY (B c) doublequantum spectroscopy (B d) 2D COSY with double-quantum filter (t = 0). The pathways shown in (B a,b, and d) involve a fixed mixing interval (t ). (Reprinted from G. Bodenhausen et al, J. Magn. Resonance, 58, 370, copyright 1984, Rights and Permission Department, Academic Press Inc., 6277 Sea Harbor Drive, Orlando, Florida 32887.)...
No. The vector presentation is suitable for depicting single-quantum magnetizations but is not appropriate when considering zero-, double-, and higher-order quantum coherences. Quantum mechanical treatment can be employed when such magnetizations are considered. [Pg.135]

The delay is generally kept at Vi x> The coupling constant Jcc for direcdy attached carbons is usually between 30 and 70 Hz. The first two pulses and delays (90J -t-180 2-t) create a spin echo, which is subjected to a second 90J pulse (i.e., the second pulse in the pulse sequence), which then creates a double-quantum coherence for all directly attached C nuclei. Following this is an incremented evolution period tu during which the double quantum-coherence evolves. The double-quantum coherence is then converted to detectable magnetization by a third pulse 0,, 2, and the resulting FID is collected. The most efficient conversion of double-quantum coherence can... [Pg.277]

SELINQUATE (Berger, 1988) is the selective ID counterpart of the 2D INADEQUATE experiment (Bax et al., 1980). The pulse sequence is shown in Fig. 7.4. Double-quantum coherences (DQC) are first excited in the usual manner, and then a selective pulse is applied to only one nucleus. This converts the DQC related to this nucleus into antiphase magnetization, which is refocused during the detection period. The experiment has not been used widely because of its low sensitivity, but it can be employed to solve a specific problem from the connectivity information. [Pg.369]

The SELINCOR experiment is a selective ID inverse heteronuclear shift-correlation experiment i.e., ID H,C-COSYinverse experiment) (Berger, 1989). The last C pulse of the HMQC experiment is in this case substituted by a selective 90° Gaussian pulse. Thus the soft pulse is used for coherence transfer and not for excitation at the beginning of the sequence, as is usual for other pulse sequences. The BIRD pulse and the A-i delay are optimized to suppress protons bound to nuclei As is adjusted to correspond to the direct H,C couplings. The soft pulse at the end of the pulse sequence (Fig. 7.8) serves to transfer the heteronuclear double-quantum coherence into the antiphase magnetization of the protons attached to the selectively excited C nuclei. [Pg.371]

Figure 7.25 illustrates the power of magnetic field gradient pulses to eliminate unwanted coherences. The double-quantum filtered COSY spec-... [Pg.388]

Figure 7.25 Homoniiclear double-quantum filtered COSY spectrum (400 MHz) of 8-mMangiotensin II in H,0 recorded without phase cycling. Magnetic field gradient pulses have been used to select coherence transfer pathways. (Reprinted from J. Mag. Reson. 87, R. Hurd, 422, copyright (1990), with permission from Academic Press, Inc.)... Figure 7.25 Homoniiclear double-quantum filtered COSY spectrum (400 MHz) of 8-mMangiotensin II in H,0 recorded without phase cycling. Magnetic field gradient pulses have been used to select coherence transfer pathways. (Reprinted from J. Mag. Reson. 87, R. Hurd, 422, copyright (1990), with permission from Academic Press, Inc.)...
Coherence A condition in which nuclei precess with a given phase relationship and can exchange spin states via transitions between two eigenstates. Coherence may be zero-quantum, single-quantum, double-quantum, etc., depending on the AM of the transition corresponding to the coherence. Only single-quantum coherence can be detected directly. [Pg.412]

Double-quantum coherence Coherence between states that are separated by magnetic quantum numbers of 2. This coherence cannot be detected directly, but must be converted to single-quantum coherence before detection. [Pg.414]

Assuming the contribution of the potential energy curves which have not been taken into account to be almost constant with the collision energy, such calculations could provide a relative estimate of the variation of the double capture cross-sections with the collision energy. The results presented in Fig. 7 seem to be coherent with this hypothesis and to corroborate a cascade effect for the double electron capture process. [Pg.346]

Fig. 9.10 (A) Definition of the dihedral angle d between the spin-pairs ij and k,l. (B) Cross-correlated relaxation can be detected by differences in intensities of the multiplet components of double quantum coherences... Fig. 9.10 (A) Definition of the dihedral angle d between the spin-pairs ij and k,l. (B) Cross-correlated relaxation can be detected by differences in intensities of the multiplet components of double quantum coherences...
Figure 14. Liouville space coupling schemes and their respective double-sided Feynman diagrams for three of the six pathways in Liouville space which contribute to p 2. The complex conjugates are not shown. All pathways proceed only via coherences, created by the interactions with the two fields shown as incoming arrows. Solid curves pertain to e( 11 and dashed curves to r/2T (Reproduced with permission from Ref. 47, Copyright 2005 American Institute of Physics.)... Figure 14. Liouville space coupling schemes and their respective double-sided Feynman diagrams for three of the six pathways in Liouville space which contribute to p 2. The complex conjugates are not shown. All pathways proceed only via coherences, created by the interactions with the two fields shown as incoming arrows. Solid curves pertain to e( 11 and dashed curves to r/2T (Reproduced with permission from Ref. 47, Copyright 2005 American Institute of Physics.)...

See other pages where Double coherence is mentioned: [Pg.475]    [Pg.311]    [Pg.475]    [Pg.311]    [Pg.107]    [Pg.294]    [Pg.120]    [Pg.338]    [Pg.54]    [Pg.431]    [Pg.568]    [Pg.135]    [Pg.369]    [Pg.226]    [Pg.73]    [Pg.250]    [Pg.251]    [Pg.273]    [Pg.277]    [Pg.277]    [Pg.277]    [Pg.278]    [Pg.387]    [Pg.388]    [Pg.389]    [Pg.229]    [Pg.249]    [Pg.375]    [Pg.604]    [Pg.154]   
See also in sourсe #XX -- [ Pg.204 ]




SEARCH



© 2024 chempedia.info