Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Double quantum filtered COSY

Figure 1. Pulse sequences of some typical 2D-NMR experiments. COSY = correlation SpectroscopY, DQFCOSY = Double Quantum Filtered COSY, RELAY = RELAYed Magnetization Spectroscopy, and NOESY = Nuclear Overhauser Effect SpectroscopY. Figure 1. Pulse sequences of some typical 2D-NMR experiments. COSY = correlation SpectroscopY, DQFCOSY = Double Quantum Filtered COSY, RELAY = RELAYed Magnetization Spectroscopy, and NOESY = Nuclear Overhauser Effect SpectroscopY.
One problem associated with COSY spectra is the dispersive character of the diagonal peaks, which can obliterate the cross-peaks lying near the diagonal. Moreover, if the multiplets are resolved incompletely in the crosspeaks, then because of their alternating phases an overlap can weaken their intensity or even cause them to disappear. In double-quantum filtered COSY spectra, both the diagonal and the cross-peaks possess antiphase character, so they can be phased simultaneously to produce pure 2D absorption line... [Pg.249]

The DQF (double-quantum filtered)-COSY spectrum of an isoprenyl coumarin along with H-NMR data are shown. Determine the H/ H homonuclear interactions in the DQF-COSY spectrum. [Pg.282]

Figure 7.25 illustrates the power of magnetic field gradient pulses to eliminate unwanted coherences. The double-quantum filtered COSY spec-... [Pg.388]

Figure 7.25 Homoniiclear double-quantum filtered COSY spectrum (400 MHz) of 8-mMangiotensin II in H,0 recorded without phase cycling. Magnetic field gradient pulses have been used to select coherence transfer pathways. (Reprinted from J. Mag. Reson. 87, R. Hurd, 422, copyright (1990), with permission from Academic Press, Inc.)... Figure 7.25 Homoniiclear double-quantum filtered COSY spectrum (400 MHz) of 8-mMangiotensin II in H,0 recorded without phase cycling. Magnetic field gradient pulses have been used to select coherence transfer pathways. (Reprinted from J. Mag. Reson. 87, R. Hurd, 422, copyright (1990), with permission from Academic Press, Inc.)...
Zheng et al. [1] postulated that the driving force for placing Zr and B on the same carbon might stem from interactions between the zirconium and oxygen or boron and chlorine atoms. However, an X-ray analysis of 22 revealed that there are no intra- or intermo-lecular interactions between any of these atoms [35]. Compound 22 was also unambiguously characterized by 1H-1H double quantum filtered COSY [36] and 13C-1H heteronuc-lear chemical shift correlation NMR spectroscopy [37,38]. Considerable differences in the chemical shifts of the diastereotopic Cp groups were found in both the XH and 13C NMR spectra. The NMR study unequivocally showed that the methine proton was at-... [Pg.238]

H/ H-double quantum filtered COSY Note that with this experiment both the diagonal and the cross peaks may be phased to pure absorption. Therefore it is best to select diagonal peaks at the extremes and in the center of the spectrum for phase adjustment. The cros.s peaks when correctly phased consist of positive and negative peaks, which are anti-phase with respect to the active, and are in-phase with respect to the passive coupling(s). [Pg.166]

The MQC intermediate state in coherence ( INEPT ) transfer can also be used to clean up the spectrum. In this case, we can apply a double-quantum filter (using either gradients or a phase cycle) to kill all coherences at the intermediate step that are not DQC. We will see the usefulness of this technique in the DQF (double-quantum filtered) COSY experiment (Chapter 10). As with the spoiler gradient applied to the 2IZSZ intermediate state, a doublequantum filter destroys any unwanted magnetization, leaving only DQC that can then be carried on to observable antiphase magnetization in the second step of INEPT transfer. [Pg.267]

A simple variant of the COSY experiment is COSY-35 (sometimes called COSY-45), in which the second 90° pulse is reduced from a 90° pulse to a 35° or 45° pulse (Fig. B.3). The result is that the fine structure of crosspeaks is simplified, with half the number of peaks within the crosspeak. This makes it much easier to sort out the coupling patterns in both dimensions and to measure couplings (active and passive) from the crosspeak fine structure. A more important variant of the COSY experiment is the DQF (double-quantum filtered)— COSY (Fig. B.4), which adds a short delay and a third 90° pulse. The INEPT transfer is divided into two steps antiphase I spin SQC to I,S DQC, and I,S DQC to antiphase S spin SQC. The filter enforces the DQC state during the short delay between the second and third pulses either by phase cycling or with gradients. DQF-COSY spectra have better phase characteristics and weaker diagonal peaks than a simple COSY, so this has become the standard COSY experiment. [Pg.636]

The structural connectivity derived from examination of the 111, 13C/DEPT, DQF-COSY, HMQC, and HMBC data (DEPT = distortionless enhancement by polarization transfer DQF = double quantum filtering COSY = correlation spectroscopy HMQC = heteronuclear multiple quantum correlation HMBC = heteronuclear multiple bond correlation) resulted in global reevaluation of sclerophytin B structure and demonstrated that this compound and the related alcohol are not composed of two ether bridges as in the originally formulated structure 37, but share the structural features depicted as 38 <20000L1879>. Comparison of 13C and 111 NMR data of Norte s... [Pg.556]

For example, from protein basic pancreatic trypsin inhibitor (BPTI), four experimental ISNets are observed from a double quantum filtered COSY spectrum as shown at the bottom of Fig. 6. No one of them is completely matched onto its ISNet cluster center. [Pg.258]

Today, a number of one- and two-dimensional NMR experiments are available for the detection of homonuclear Li, Li and Li, Li couplings. Aside from the COSY experiment, the double quantum filtered COSY (COSY-DQF), the TOCSY, and the ID and 2D INADEQUATE experiments [24] have been successfully employed. An attractive feature of all these experiments is their sensitivity for small scalar interactions which give rise to crosspeaks even if line splittings in the corresponding ID spectra are not resolved. This was first demonstrated with COSY experiments for a paramagnetic nickel complex [82] and for quadrupolar nuclei in the case of boron-11 [83]. [Pg.262]

Double Quantum Filtered COSY The double quantum filtered COSY experiment (DQF-COSY, Section 6-1 and Figure 6-16) is similar to COSY, with three 90° pulses in the sequence 90°-/i-90°-T-90°-f2 (acquire). The DQF-COSY experiment is performed in the phase-sensitive mode, but, unlike the situation in the phase-sensitive COSY experiment, in the DQF-COSY both diagonal and cross peaks can be phased as absorptive signals. This difference not... [Pg.253]

Fig. 23. Double-quantum filtered COSY of the pure isotactic hexamer (mntmmm-) of methyl methacrylate. (From Ref. 272.)... Fig. 23. Double-quantum filtered COSY of the pure isotactic hexamer (mntmmm-) of methyl methacrylate. (From Ref. 272.)...
The DQF-COSY sequence (Fig. 5.40) differs from the basic COSY experiment by the addition of a third pulse and the use of a modified phase-cycle or gradient sequence to provide the desired selection. Thus, following tj frequency labelling, the second 90° pulse generates multiple-quantum coherence which is not observed in the COSY-90 sequence since it remains invisible to the detector. This may, however, be reconverted into single-quantum coherence by the application of the third pulse, and hence subsequently detected. The required phase-cycle or gradient combination selects only signals that existed as double-quantum coherence between the last two pulses, whilst all other routes are cancelled, hence the term double-quantum filtered COSY. [Pg.189]

Figure 5>t2. The double-quantum filtered COSY spectrum (right) provides greater clarity close to the diagonal peaks than the basic phase-sensitive COSY (left) as it does not suffer from broad, disposive diagonal peaks. [Pg.191]


See other pages where Double quantum filtered COSY is mentioned: [Pg.249]    [Pg.118]    [Pg.42]    [Pg.167]    [Pg.181]    [Pg.181]    [Pg.282]    [Pg.370]    [Pg.447]    [Pg.449]    [Pg.331]    [Pg.238]    [Pg.512]    [Pg.800]    [Pg.3446]    [Pg.530]    [Pg.183]    [Pg.332]    [Pg.318]    [Pg.173]    [Pg.290]    [Pg.157]    [Pg.18]    [Pg.229]    [Pg.176]    [Pg.189]    [Pg.317]   


SEARCH



COSY

Correlated spectroscopy double-quantum filtered COSY

DQF-COSY (Double-quantum filtering

Double quantum filtered

Double quantum filtering

Double quantum-filtered COSY experiment

Double quantum-filtered COSY spectra

Double-Quantum Filtered —H COSY

Double-quantum [

Double-quantum filtered (DQF>COSY

Double-quantum filtering COSY

Phase COSY (double quantum filtered

Quantum Filters

© 2024 chempedia.info