Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dotted arrows

Figure Bl.1.3. State energy diagram for a typical organic molecule. Solid arrows show radiative transitions A absorption, F fluorescence, P phosphorescence. Dotted arrows non-radiative transitions. Figure Bl.1.3. State energy diagram for a typical organic molecule. Solid arrows show radiative transitions A absorption, F fluorescence, P phosphorescence. Dotted arrows non-radiative transitions.
Figure 6-4. Backtracking approach realized as depth-first search aigorithm. Dotted arrows trace the route used for traversing all mappings in the search tree. Each node in the tree corresponds to a mapping between Cq and C-p (Figure 6-2). Figure 6-4. Backtracking approach realized as depth-first search aigorithm. Dotted arrows trace the route used for traversing all mappings in the search tree. Each node in the tree corresponds to a mapping between Cq and C-p (Figure 6-2).
FIGURE 5.24 Components of ciliary movement, (a) Power and recovery phases of ciliary movement. Arrows indicate the direction of ciliary travel, (b) Net mucociliary transport. Dotted arrows show the direction of cilia while the solid arrows show mucus transport. Note that net gel movement is forward in I and III while no gel movement occurs in II during the cilia recovery phase. Modified from Ful-ford and Blake. ... [Pg.216]

Let us choose now a particular solvent and a particular ionic crystal. If by the process (1,M) we obtain in a vacuum the ions from this crystal, and if we then imagine that we plunge these ions into the chosen solvent, as indicated by the vertical dotted arrow in Fig. la, it is clear that the... [Pg.3]

Fig. 6. Sequence comparisons of Rieske proteins from spinach chloroplasts, beef heart mitochondria, green sulfur bacteria, and firmicutes. The extended insertion of proteobacterial Rieske proteins as compared to the mitochondrial one is indicated by a dotted arrow. The redox-potential-influencing Ser residue is marked by a vertical arrow. The top and the bottom sequence numberings refer to the spinach and bovine proteins, respectively. Fully conserved residues are marked by dark shading, whereas the residues conserved in the b6f-group are denoted by lighter shading. Fig. 6. Sequence comparisons of Rieske proteins from spinach chloroplasts, beef heart mitochondria, green sulfur bacteria, and firmicutes. The extended insertion of proteobacterial Rieske proteins as compared to the mitochondrial one is indicated by a dotted arrow. The redox-potential-influencing Ser residue is marked by a vertical arrow. The top and the bottom sequence numberings refer to the spinach and bovine proteins, respectively. Fully conserved residues are marked by dark shading, whereas the residues conserved in the b6f-group are denoted by lighter shading.
Figure 51-1. The pathways of blood coagulation. The intrinsic and extrinsic pathways are indicated. The events depicted below factor Xa are designated the final common pathway, culminating in the formation of cross-linked fibrin. New observations (dotted arrow) include the finding that complexes of tissue factor and factor Vila activate not only factor X (in the classic extrinsic pathway) but also factor IX in the intrinsic pathway, in addition, thrombin and factor Xa feedback-activate at the two sites indicated (dashed arrows). (PK, prekallikrein HK, HMW kininogen PL, phospholipids.) (Reproduced, with permission, from Roberts HR, Lozier JN New perspectives on the coagulation cascade. Hosp Pract [Off Ed] 1992Jan 27 97.)... Figure 51-1. The pathways of blood coagulation. The intrinsic and extrinsic pathways are indicated. The events depicted below factor Xa are designated the final common pathway, culminating in the formation of cross-linked fibrin. New observations (dotted arrow) include the finding that complexes of tissue factor and factor Vila activate not only factor X (in the classic extrinsic pathway) but also factor IX in the intrinsic pathway, in addition, thrombin and factor Xa feedback-activate at the two sites indicated (dashed arrows). (PK, prekallikrein HK, HMW kininogen PL, phospholipids.) (Reproduced, with permission, from Roberts HR, Lozier JN New perspectives on the coagulation cascade. Hosp Pract [Off Ed] 1992Jan 27 97.)...
Figure 2 Locations of cleavage of RGO s by RG-hydrolase. Differently dotted arrows indicate different cleavage options. A short arrow indicates a secondary cleavage, see text. Explanation of symbols, see table 1. Numbers refer to degree of polymerisation. Figure 2 Locations of cleavage of RGO s by RG-hydrolase. Differently dotted arrows indicate different cleavage options. A short arrow indicates a secondary cleavage, see text. Explanation of symbols, see table 1. Numbers refer to degree of polymerisation.
Addition of these six products, with negative signs for those obtained from the dotted arrows, yields the result... [Pg.85]

Scheme 1 Electronic states involved in the absorbtion bands in the region of the first singlet—triplet intersection for octahedral, tetragonal and trigonal complexes of nickel(II).336 Solid arrows denote spin-allowed absorbtion transitions, dotted arrows connect pairs of interacting levels. (reprinted with permission from ref. 336 1998, American Chemical Society). Scheme 1 Electronic states involved in the absorbtion bands in the region of the first singlet—triplet intersection for octahedral, tetragonal and trigonal complexes of nickel(II).336 Solid arrows denote spin-allowed absorbtion transitions, dotted arrows connect pairs of interacting levels. (reprinted with permission from ref. 336 1998, American Chemical Society).
Figure 5.6 Successful transformation of Aeromonas hydrophila raw spectra A acquired on day 27 to new locations a (relationship indicated with a dotted arrow) near an A. hydrophila day 1 library spectrum C using another day 27 bacterium, E. coli 1090 D as reference compared to its own day 1 E. coli 1090 Library spectrum L (relationship indicated with a solid arrow). Figure 5.6 Successful transformation of Aeromonas hydrophila raw spectra A acquired on day 27 to new locations a (relationship indicated with a dotted arrow) near an A. hydrophila day 1 library spectrum C using another day 27 bacterium, E. coli 1090 D as reference compared to its own day 1 E. coli 1090 Library spectrum L (relationship indicated with a solid arrow).
Figure 8.1 Body iron stores and daily iron exchange. The figure shows a schematic representation of the routes of iron movement in normal adult male subjects. The plasma iron pool is about 4 mg (transferrin-bound iron and non-transferrin-bound iron), although the daily turnover is over 30 mg. The iron in parenchymal tissues is largely haem (in muscle) and ferritin/haemosiderin (in hepatic parenchymal cells). Dotted arrows represent iron loss through loss of epithelial cells in the gut or through blood loss. Numbers are in mg/day. Transferrin-Tf haemosiderin - hs MPS - mononuclear phagocytic system, including macrophages in spleen and Kupffer cells in liver. Figure 8.1 Body iron stores and daily iron exchange. The figure shows a schematic representation of the routes of iron movement in normal adult male subjects. The plasma iron pool is about 4 mg (transferrin-bound iron and non-transferrin-bound iron), although the daily turnover is over 30 mg. The iron in parenchymal tissues is largely haem (in muscle) and ferritin/haemosiderin (in hepatic parenchymal cells). Dotted arrows represent iron loss through loss of epithelial cells in the gut or through blood loss. Numbers are in mg/day. Transferrin-Tf haemosiderin - hs MPS - mononuclear phagocytic system, including macrophages in spleen and Kupffer cells in liver.
Figure 7.5. Relationship between symmetrical (

reflection geometry. Bold bars symbolize the sample in symmetrical (dashed) and asymmetrical (solid) geometry. Incident and scattered beam are shown by dashed-dotted arrows, the incident angle is a = 0 + scattering vector s. For the tilted sample the sample-fixed scattering vector S3 is indicated (after [84])... [Pg.97]

Figure 2. Principles of reversible luminescence sensing using photochemical quenching processes (electron, energy or proton transfer). Dye = luminescent indicator Q = quencher species dotted arrow non-radiative deactivation processes. The luminescence intensity (and excited state lifetime) of the indicator dye decreases in the presence of the quencher. The indicator dye is typically supported onto a polymer material in contact with the sample. The quencher may he the analyte itself or a third partner species that interacts with the analyte (see text). Figure 2. Principles of reversible luminescence sensing using photochemical quenching processes (electron, energy or proton transfer). Dye = luminescent indicator Q = quencher species dotted arrow non-radiative deactivation processes. The luminescence intensity (and excited state lifetime) of the indicator dye decreases in the presence of the quencher. The indicator dye is typically supported onto a polymer material in contact with the sample. The quencher may he the analyte itself or a third partner species that interacts with the analyte (see text).
FIGURE 52-6 Biosynthesis/metabolism of steroids in the CNS. The conversion of delta5P to dehydroepiandrosterone (DHA) is postulated but not demonstrated. D5P and DHA inhibit and 3oc,5oc-THP potentiates GABAa receptor function, as summarized in Figure 52-7. Solid arrows indicate demonstrated pathways dotted arrows indicate possible pathways. Metabolic inhibitors of enzymes are indicated by . (Redrawn from [12], with permission.)... [Pg.850]

Figure 5.42 Sequence and relative stability in growth pattern of bile showing formation of metastable intermediates as function of time after supersaturation. Less stable structures have higher chemical potential. Solid and dotted arrows represent observed and presumed transitions, respectively. Reprinted with permission from Ref. 161. Copyright 1993 by the National Academy of Sciences, U.S.A. Figure 5.42 Sequence and relative stability in growth pattern of bile showing formation of metastable intermediates as function of time after supersaturation. Less stable structures have higher chemical potential. Solid and dotted arrows represent observed and presumed transitions, respectively. Reprinted with permission from Ref. 161. Copyright 1993 by the National Academy of Sciences, U.S.A.
Figure 9.14 Energy transitions in defects (a) simple excitation and release of energy (.b) up-conversion of two low-energy photons to one high-energy photon (c) typical fluorescence in which some energy is lost as heat to the solid (dotted arrow) before transition to the ground state and (d) up-conversion of two low-energy photons to a photon of intermediate... Figure 9.14 Energy transitions in defects (a) simple excitation and release of energy (.b) up-conversion of two low-energy photons to one high-energy photon (c) typical fluorescence in which some energy is lost as heat to the solid (dotted arrow) before transition to the ground state and (d) up-conversion of two low-energy photons to a photon of intermediate...
FIG. 31 Schematic diagram illustrating the transition between a supercooled liquid state (rubber) and an amorphous solid state (glass). The glass transition event is typically caused by a decrease in water content and/or temperature. The reversibility of the transition, as indicated by the dotted arrow, is material dependent (see text for further discussion of the reversibility of the transition). [Pg.66]

Fig. 19.17. Schematic showing the most basic elements that should be a part of an LC-NMR system. The dotted arrows represent electronic controls and the solid lines represent the flow path of chromatographic eluent. Fig. 19.17. Schematic showing the most basic elements that should be a part of an LC-NMR system. The dotted arrows represent electronic controls and the solid lines represent the flow path of chromatographic eluent.
Figure 13.9 (a) The structure of the four subunits of the CcO from R. sphaeroides (b) a more detailed view of the redox-active cofactors and amino acid residues in the proton transfer pathways (dotted arrows). (From Namslauer and Brzezinski, 2004. Copyright 2004, with permission from Elsevier.)... [Pg.222]

Vibrational relaxation (dotted arrows in Figure 1.19) is able to maintain a population inversion. The broad absorption and... [Pg.22]

Fig. 4.5 Schematic projection of the energetics of a reaction. The diagram shows the Born-Oppenheimer energy surface mapped onto the reaction coordinate. The barrier height AE has its zero at the bottom of the reactant well. One of the 3n — 6 vibrational modes orthogonal to the reaction coordinate is shown in the transition state. H and D zero point vibrational levels are shown schematically in the reactant, product, and transition states. The reaction as diagrammed is slightly endothermic, AE > 0. The semiclassical reaction path follows the dash-dot arrows. Alternatively part of the reaction may proceed by tunneling through the barrier from reactants to products with a certain probability as shown with the gray arrow... Fig. 4.5 Schematic projection of the energetics of a reaction. The diagram shows the Born-Oppenheimer energy surface mapped onto the reaction coordinate. The barrier height AE has its zero at the bottom of the reactant well. One of the 3n — 6 vibrational modes orthogonal to the reaction coordinate is shown in the transition state. H and D zero point vibrational levels are shown schematically in the reactant, product, and transition states. The reaction as diagrammed is slightly endothermic, AE > 0. The semiclassical reaction path follows the dash-dot arrows. Alternatively part of the reaction may proceed by tunneling through the barrier from reactants to products with a certain probability as shown with the gray arrow...
Fio. 12. Fhotoelectron spectrum of methanol vapour using the helium resonance line (21-21 e.v.). Ionization energy increases from left to right. The adiabatic ionization potentials measured (Al-Jobomy and Turner, 1964) are indicated by vertical arrows, and can be compared with (probably) vertical I.P. values derived from electron impact appearance potentials by Collin (1961) (dotted arrows). [Pg.51]

Pig. 2-37. Redox reaction cycle FeJ5 - Fejj + ei iD, - FeJ in aqueous solution solid arrow=adiabatic electron transfer, dotted arrow = hydrate structure reorganization X = reorganization energy ered.d = most probable donor level eox.a = most probable acceptor level. [Pg.50]

Figure 7.5 Overview of the several states of the active site in the [NiFe] hydrogenase from A. v/nosum.Transitions can be invoked by redox titrations in the presence of redox mediators and involve both electrons (e ) and protons (H ) as indicated on the left side of the blocks. H2, in the absence of mediators, can rapidly react only with enzyme in the active states (lower block), as indicated on the right side. Dotted arrows indicate a very slow reaction.Very similar states are found in the D. gigas enzyme. Figure 7.5 Overview of the several states of the active site in the [NiFe] hydrogenase from A. v/nosum.Transitions can be invoked by redox titrations in the presence of redox mediators and involve both electrons (e ) and protons (H ) as indicated on the left side of the blocks. H2, in the absence of mediators, can rapidly react only with enzyme in the active states (lower block), as indicated on the right side. Dotted arrows indicate a very slow reaction.Very similar states are found in the D. gigas enzyme.
The Nig-S Nig-C reaction is also driven by H2 alone, but then the reverse reaction is extremely slow (dotted arrow in Fig. 7.5). To explain the reaction with H2 in the absence of mediators, involvement of an Fe-S cluster has to be assumed (see below). [Pg.140]

Figure 3.2. Overview of the three states of the active standard [NiFe]-hydrogenase from A. vinosum.The wavelengths indicate the infrared frequencies for the two CN groups and the CO group, respectively. The reactions with hydrogen are fast (thick arrows) or extremely slow (dotted arrow). Protons are not shown, a, active C, C state L, light-induced state R, reduced S, EPR silent , the active site in this state is a S = V2 system (detectable by EPR) 4Fe, [4Ee4S] cluster. Figure 3.2. Overview of the three states of the active standard [NiFe]-hydrogenase from A. vinosum.The wavelengths indicate the infrared frequencies for the two CN groups and the CO group, respectively. The reactions with hydrogen are fast (thick arrows) or extremely slow (dotted arrow). Protons are not shown, a, active C, C state L, light-induced state R, reduced S, EPR silent , the active site in this state is a S = V2 system (detectable by EPR) 4Fe, [4Ee4S] cluster.
A conceptual model of sedimentary nitrogen cycling. Dashed arrows represent pore water diffusion and advection. Dotted arrows represent sedimentation. Source-. After Burdige, D.J. (2006). Geochemistry of Marine Sediments. Princeton University Press, p. 453. [Pg.694]

Fig. 4.16 Time evolution of the mean squared displacement (r ) (empty circle) at 363 K and the non-Gaussian parameter 2 obtained from the simulations at 363 K (filled circle) for the main chain protons of PL The solid vertical arrow indicates the position of the maximum of 2> At times r>r(Qinax)> the crossover time, a2 assumes small values, as in the example shown by the dotted arrows. The corresponding functions (r ) and a2 are deduced from the analysis of the experimental data at 320 K in terms of the jump anomalous diffusion model and are displayed as solid lines for (r )and dashed-dotted lines for a2- (Reprinted with permission from [9]. Copyright 2003 The American Physical Society)... Fig. 4.16 Time evolution of the mean squared displacement (r ) (empty circle) at 363 K and the non-Gaussian parameter 2 obtained from the simulations at 363 K (filled circle) for the main chain protons of PL The solid vertical arrow indicates the position of the maximum of 2> At times r>r(Qinax)> the crossover time, a2 assumes small values, as in the example shown by the dotted arrows. The corresponding functions (r ) and a2 are deduced from the analysis of the experimental data at 320 K in terms of the jump anomalous diffusion model and are displayed as solid lines for (r )and dashed-dotted lines for a2- (Reprinted with permission from [9]. Copyright 2003 The American Physical Society)...
Figure 1.5 Symbols for a known factor (solid arrow) and an unknown factor (dotted arrow). Figure 1.5 Symbols for a known factor (solid arrow) and an unknown factor (dotted arrow).
A known factor can be shown as a solid arrow pointing toward the system an unknown factor can be shown as a dotted arrow pointing toward the system (see Figure 1.5). [Pg.6]


See other pages where Dotted arrows is mentioned: [Pg.40]    [Pg.295]    [Pg.108]    [Pg.418]    [Pg.269]    [Pg.444]    [Pg.445]    [Pg.294]    [Pg.140]    [Pg.35]    [Pg.66]    [Pg.127]    [Pg.68]    [Pg.646]    [Pg.755]   
See also in sourсe #XX -- [ Pg.5 , Pg.12 ]




SEARCH



© 2024 chempedia.info