Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Donor Doping

Identification of residual and doped donors have been identified in expitaxial GaAs using the photolumines-cence technique in the presence of applied magnetic fields. Transitions occur between excited initial and final states of the neutral-donor-bound-exciton complexes. The magnetic field compresses the wave function which sharpens the optical transitions. The magnetic field also separates the different donors when viewed from the neutral-donor-bound-exciton transitions. These two effects make possible the identification of donors when the donor concentration is in the mid lOlScm" range. [Pg.240]

All teclmologically important properties of semiconductors are detennined by defect-associated energy levels in the gap. The conductivity of pure semiconductors varies as g expf-A CgT), where is the gap. In most semiconductors with practical applications, the size of the gap, E 1-2 eV, makes the thennal excitation of electrons across the gap a relatively unimportant process. The introduction of shallow states into the gap through doping, with either donors or acceptors, allows for large changes in conductivity (figure C2.16.1). The donor and acceptor levels are typically a few meV below the CB and a few tens of meV above the VB, respectively. The depth of these levels usually scales with the size of the gap (see below). [Pg.2882]

The Bolir radius is very large, 3-5 nm, and tlie shallow impurity wavefunction extends over a large portion of the crystal. Doping up to tlie Tnetallic limit consists in implanting a sufficiently high concentration of donors so tliat tlie shallow-donor wavefunctions overlap, creating a half-filled impurity band in which tlie electrons move freely. [Pg.2887]

Fig. 1. Band-edge energy diagram where the energy of electrons is higher in the conduction band than in the valence band (a) an undoped semiconductor having a thermally excited carrier (b) n-ty e doped semiconductor having shallow donors and (c) a -type doped semiconductor having shallow acceptors. Fig. 1. Band-edge energy diagram where the energy of electrons is higher in the conduction band than in the valence band (a) an undoped semiconductor having a thermally excited carrier (b) n-ty e doped semiconductor having shallow donors and (c) a -type doped semiconductor having shallow acceptors.
Fig. 1. (a) Silicon (valence = 4) crystal lattice shown in two dimensions with no broken bonds, T = 0 K (b) siUcon crystal lattice with a broken bond (c) sibcon crystal lattice with a siUcon atom displaced by a donor dopant, ie, -doped (valence = 5) and (d) siUcon crystal lattice with a siUcon atom displaced... [Pg.467]

The carrier concentrations in doped or extrinsic semiconductors to which donor or acceptor atoms have been added can be deterrnined by considering the chemical kinetics or mass action of reactions between electrons and donor ions or between holes and acceptor ions. The condition for electrical neutraHty is given by equation 6. When the predominant dopants are donors, the semiconductor is... [Pg.345]

For lightly doped n-type semiconductors at normal operating temperatures there is complete donor dissociation (donor saturation). [Pg.345]

Resistivity measurements of doped, alpha-siUcon carbide single crystals from —195 to 725°C showed a negative coefficient of resistivity below room temperature, which gradually changed to positive above room temperature (45). The temperature at which the changeover occurred increased as the ionization of the donor impurity increased. This is beUeved to be caused by a change in conduction mechanism. [Pg.465]

Sihcon carbide can be doped using boron [7440-42-8] to provide acceptor levels within the band gap (0.3 eV above the valence band), thus making it a -type conductor, or nitrogen can be added to provide donor levels and n-ty e conduction (0.07 eV) below the conduction band. [Pg.358]

Strontium titanate [12060-59-2] SrTiO, becomes an n-ty e semiconductor when additional electrons are created on the Ti lattice sites by donor doping or when oxygen is removed from the material through heat treatment in a reducing atmosphere. The mobiUty of the electrons in the conduction band is about 6 crc] j(V-s). On the other hand, when ZnO is reduced, 2inc interstitials are formed and these act as donors, each yielding a free electron. [Pg.358]

R. D. Roseman, "Stmcture and Phase Development in Donor Doped Barium Titanate," in print, 1992. [Pg.364]

Raman spectra have also been reported on ropes of SWCNTs doped with the alkali metals K and Rb and with the halogen Br2 [30]. It is found that the doping of CNTs with alkali metals and halogens yield Raman spectra that show spectral shifts of the modes near 1580 cm" associated with charge transfer. Upshifts in the mode frequencies are observed and are associated with the donation of electrons from the CNTs to the halogens in the case of acceptors, and downshifts are observed for electron charge transfer to the CNT from the alkali metal donors. These frequency shifts of the CNT Raman-active modes can in principle be u.sed to characterise the CNT-based intercalation compound for the amount of intercalate uptake that has occurred on the CNT wall. [Pg.60]

Poly(2-methoxy, 5-(2 -ethylhexyloxy)-1,4-phenylene vinylene) MEH-PPV Emission peak = 605 nm p-type doping by sulfuric acid (H2SO4) -type doping by sodium (electron donor) Iodine (I2) = electron acceptor = > oxidizing agent... [Pg.195]


See other pages where Donor Doping is mentioned: [Pg.55]    [Pg.382]    [Pg.392]    [Pg.90]    [Pg.86]    [Pg.455]    [Pg.370]    [Pg.55]    [Pg.382]    [Pg.392]    [Pg.90]    [Pg.86]    [Pg.455]    [Pg.370]    [Pg.2892]    [Pg.246]    [Pg.126]    [Pg.131]    [Pg.407]    [Pg.433]    [Pg.372]    [Pg.382]    [Pg.382]    [Pg.345]    [Pg.361]    [Pg.421]    [Pg.134]    [Pg.38]    [Pg.196]    [Pg.255]    [Pg.262]    [Pg.536]    [Pg.405]    [Pg.608]    [Pg.224]    [Pg.224]    [Pg.394]    [Pg.437]    [Pg.2]    [Pg.17]    [Pg.100]    [Pg.437]    [Pg.271]    [Pg.7]    [Pg.26]   
See also in sourсe #XX -- [ Pg.285 ]




SEARCH



© 2024 chempedia.info