Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dopant valence

Novel Routes to Functionally Graded Ceramics Atmosphere-Induced Dopant Valence Gradients... [Pg.325]

Alternatively, as in Figure 9.9(b), a dopant with one valence electron fewer than the host contributes an impurity band 1 which is empty but more accessible to electrons from the valence band. An example of such a p-type semiconductor is silicon doped with aluminium KL3s 3p ) in which the band gap is about 0.08 eY... [Pg.351]

The impurity atoms used to form the p—n junction form well-defined energy levels within the band gap. These levels are shallow in the sense that the donor levels He close to the conduction band (Fig. lb) and the acceptor levels are close to the valence band (Fig. Ic). The thermal energy at room temperature is large enough for most of the dopant atoms contributing to the impurity levels to become ionized. Thus, in the -type region, some electrons in the valence band have sufficient thermal energy to be excited into the acceptor level and leave mobile holes in the valence band. Similar excitation occurs for electrons from the donor to conduction bands of the n-ty e material. The electrons in the conduction band of the n-ty e semiconductor and the holes in the valence band of the -type semiconductor are called majority carriers. Likewise, holes in the -type, and electrons in the -type semiconductor are called minority carriers. [Pg.126]

Fig. 1. (a) Silicon (valence = 4) crystal lattice shown in two dimensions with no broken bonds, T = 0 K (b) siUcon crystal lattice with a broken bond (c) sibcon crystal lattice with a siUcon atom displaced by a donor dopant, ie, -doped (valence = 5) and (d) siUcon crystal lattice with a siUcon atom displaced... [Pg.467]

Atoms of elements that are characterized by a valence greater than four, eg, phosphoms or arsenic (valence = 5), are one type of dopant. These high valence dopants contribute free electrons to the crystal and are cabed donor dopants. If one donor atom is incorporated in the lattice, four of the five valence electrons of donor dopants are covalentiy bonded, but the fifth electron is very weakly bound and can be detached by only ca 0.03 eV of energy. Once it is detached, it is available as a free electron, ie, a carrier of electric current. A sibcon crystal with added donor dopants has excess electron carriers and is cabed n-ty e (negative) sibcon (Fig. Ic). [Pg.467]

When a sibcon crystal is doped with atoms of elements having a valence of less than four, eg, boron or gallium (valence = 3), only three of the four covalent bonds of the adjacent sibcon atoms are occupied. The vacancy at an unoccupied covalent bond constitutes a hole. Dopants that contribute holes, which in turn act like positive charge carriers, are acceptor dopants and the resulting crystal is -type (positive) sibcon (Fig. Id). [Pg.467]

Both anatase and mtile are broad band gap semiconductors iu which a fiUed valence band, derived from the O 2p orbitals, is separated from an empty conduction band, derived from the Ti >d orbitals, by a band gap of ca 3 eV. Consequendy the electrical conductivity depends critically on the presence of impurities and defects such as oxygen vacancies (7). For very pure thin films, prepared by vacuum evaporation of titanium metal and then oxidation, conductivities of 10 S/cm have been reported. For both siugle-crystal and ceramic samples, the electrical conductivity depends on both the state of reduction of the and on dopant levels. At 300 K, a maximum conductivity of 1 S/cm has been reported at an oxygen deficiency of... [Pg.121]

Cathodoluminescence, CL, involves emission in the UV and visible region and as such is not element specific, since the valence/conduction band electrons are involved in the process. It is therefore sensitive to electronic structure effects and is sensitive to defects, dopants, etc., in electronic materials. Its major use is to map out such regions spatially, using a photomultiplier to detect all emitted light without... [Pg.118]

FIGURE 3.46 In a p-type semiconductor, the electron-poor dopant atoms effectively remove electrons from the valence band, and the "holes" that result (blue band at the top of the valence band) enable the remaining electrons to become mobile and conduct electricity through the valence band. [Pg.251]

The activation energy Ea - defined as Ec - Ey for the conduction band (and analogously for the valence band), can be used to assess the presence of impurities. Due to their presence, either intentional (B or P dopant atoms) or unintentional (O or N), the Fermi level shifts several tenths of an electron volt towards the conduction or the valence band. The activation energy is determined from plots of logafT) versus 1/7, with 50 < 7 < 160°C. For undoped material Ea is about 0.8 eV. The Fermi level is at midgap position, as typically Eg is around 1.6 eV. [Pg.8]

Acceptor dopants are impurity ions of a lower valence than that of the parent ions, as when small amounts of A1203 are incorporated into Ti02, so that the Al3+ ion substitutes for Ti4+. The acceptor species has an effective negative charge, Al i in this example, and the introduction of acceptor species tends to introduce counterbalancing... [Pg.353]

These charges exactly balance, and the material would be an insulator, a normal ionic compound. Hole doping can be achieved by adding lower valence cation such as Sr2+ or oxygen interstitials to the charge reservoir. For Sr2+ aceptor dopants ... [Pg.372]

Aliovalent additives are often called donor dopants, when they tend to provide electrons and enhance intrinsic n-type semiconducting behavior, or acceptor dopants, when they tend to give a population of mobile holes and enhance /j-typc semiconducting behavior. The process of creating electronic defects in a crystal in this way is called valence induction. [Pg.392]


See other pages where Dopant valence is mentioned: [Pg.110]    [Pg.325]    [Pg.328]    [Pg.329]    [Pg.330]    [Pg.563]    [Pg.110]    [Pg.325]    [Pg.328]    [Pg.329]    [Pg.330]    [Pg.563]    [Pg.113]    [Pg.119]    [Pg.445]    [Pg.446]    [Pg.467]    [Pg.468]    [Pg.345]    [Pg.356]    [Pg.361]    [Pg.372]    [Pg.48]    [Pg.258]    [Pg.332]    [Pg.179]    [Pg.196]    [Pg.262]    [Pg.340]    [Pg.430]    [Pg.468]    [Pg.545]    [Pg.427]    [Pg.2]    [Pg.3]    [Pg.205]    [Pg.235]    [Pg.17]    [Pg.69]    [Pg.254]    [Pg.351]    [Pg.352]   
See also in sourсe #XX -- [ Pg.197 ]




SEARCH



© 2024 chempedia.info