Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Donor and acceptor molecules

Chemical properties of deposited monolayers have been studied in various ways. The degree of ionization of a substituted coumarin film deposited on quartz was determined as a function of the pH of a solution in contact with the film, from which comparison with Gouy-Chapman theory (see Section V-2) could be made [151]. Several studies have been made of the UV-induced polymerization of monolayers (as well as of multilayers) of diacetylene amphiphiles (see Refs. 168, 169). Excitation energy transfer has been observed in a mixed monolayer of donor and acceptor molecules in stearic acid [170]. Electrical properties have been of interest, particularly the possibility that a suitably asymmetric film might be a unidirectional conductor, that is, a rectifier (see Refs. 171, 172). Optical properties of interest include the ability to make planar optical waveguides of thick LB films [173, 174]. [Pg.560]

The measurement of fluorescence intensity from a compound containing cliromophores of two spectral types is an example of a system for which it is reasonable to operate witli tire average rates of energy transfer between spectral pools of molecules. Let us consider tire simple case of two spectral pools of donor and acceptor molecules, as illustrated in figure C3.4.2 [18]. The average rate of energy transfer can be calculated as... [Pg.3020]

In tliese equations and are tire excited state populations of tire donor and acceptor molecules and and are tire lifetimes of tire donor and acceptor molecules in tire excited state tire notation is used to distinguish it from tire radiative constant (in otlier words for tire donor) is given by (C3.4.5) and tire... [Pg.3020]

Table 1. Common Donor and Acceptor Molecules Used in Organic Semiconductor and Devices... Table 1. Common Donor and Acceptor Molecules Used in Organic Semiconductor and Devices...
Electron donor molecules are oxidized in solution easily. Eor example, for TTE is 0.33V vs SCE in acetonitrile. Similarly, electron acceptors such as TCNQ are reduced easily. TCNQ exhibits a reduction wave at — 0.06V vs SCE in acetonitrile. The redox potentials can be adjusted by derivatizing the donor and acceptor molecules, and this tuning of HOMO and LUMO levels can be used to tailor charge-transfer and conductivity properties of the material. Knowledge of HOMO and LUMO levels can also be used to choose materials for efficient charge injection from metallic electrodes. [Pg.240]

For electron movement to occur, the donor and acceptor molecules must approach so that the donor HOMO and acceptor LUMO can interact. For example, the LUMO of singlet methylene is a 2p atomic orbital on carbon that is perpendicular to the molecular plane. Donors must approach methylene in a way that allows interaction of the donor HOMO with the 2p orbital. [Pg.20]

The l ,J -DBFOX/Ph-transition metal aqua complex catalysts should be suitable for the further applications to conjugate addition reactions of carbon nucleophiles [90-92]. What we challenged is the double activation method as a new methodology of catalyzed asymmetric reactions. Therein donor and acceptor molecules are both activated by achiral Lewis amines and chiral Lewis acids, respectively the chiral Lewis acid catalysts used in this reaction are J ,J -DBFOX/Ph-transition metal aqua complexes. [Pg.291]

We employed malononitrile and l-crotonoyl-3,5-dimethylpyrazole as donor and acceptor molecules, respectively. We have found that this reaction at room temperature in chloroform can be effectively catalyzed by the J ,J -DBFOX/Ph-nick-el(II) and -zinc(II) complexes in the absence of Lewis bases leading to l-(4,4-dicya-no-3-methylbutanoyl)-3,5-dimethylpyrazole in a good chemical yield and enantio-selectivity (Scheme 7.47). However, copper(II), iron(II), and titanium complexes were not effective at all, either the catalytic activity or the enantioselectivity being not sufficient. With the J ,J -DBFOX/Ph-nickel(II) aqua complex in hand as the most reactive catalyst, we then investigated the double activation method by using this catalyst. [Pg.291]

Research on the molecular basis of photoexcitation and electron transfer, including interactions of electron donor and acceptor molecules, could lead to new photochemicals. Development of model photosensitive compounds and methods of incorporating them into membranes containing donor, acceptor, or intermediate excitation transfer molecules, and... [Pg.108]

For dilute solutions of essentially independent donor and acceptor molecules the Forster or resonance interaction is quite important in molecular aggregrates and in molecular crystals exciton interactions are likely to be important. When the interaction is strong the excitation is not localized on the donor or acceptor but is spread over both. If larger aggregrates are involved, the excitation can be spread over many molecules/33-3 This can easily be seen for the case of a dimer where the donor and acceptor are... [Pg.147]

Below we will use Eq. (16), which, in certain models in the Born-Oppenheimer approximation, enables us to take into account both the dependence of the proton tunneling between fixed vibrational states on the coordinates of other nuclei and the contribution to the transition probability arising from the excited vibrational states of the proton. Taking into account that the proton is the easiest nucleus and that proton transfer reactions occur often between heavy donor and acceptor molecules we will not consider here the effects of the inertia, nonadiabaticity, and mixing of the normal coordinates. These effects will be considered in Section V in the discussion of the processes of the transfer of heavier atoms. [Pg.131]

Nonradiative transfer of excitation energy requires some interaction between donor and acceptor molecules and occurs if the emission spectrum of the donor overlaps the absorption spectrum of the acceptor, so that several vibronic transitions in the donor must have practically the same energy as the corresponding transitions in the acceptor. Such transitions are coupled, i.e., they are in resonance, and that is why the term resonance energy transfer (RET) or electronic energy transfer (EET) are often used. [Pg.198]

As we mentioned in the last paragraph, for most experiments with solution samples there is much less uncertainty in the k2 parameter than is often supposed, or suspected. Even for chromophores with orientations solidly fixed, a large fraction of the relative orientation space of the chromophores transition moments are such that K2 is often not too far from 2/3 [6, 10, 89], It is unlikely that the donor and acceptor molecules will be oriented such that the extreme values of k2 apply because the orientation configurational space for values close to these extreme values is relatively small [6], However, this does not discount, especially for fixed orientations and distances between D and A molecules, that k2 can assume a particular value very different from 2/3, and then this must be known to make a reasonable estimate of rDA. [Pg.30]

The efficiency of energy transfer (E) is the ratio of the number of energy transfer occurrences from D to A divided by the total number of excitations of a donor molecule. This is the same as the ratio of the rate of energy transfer to the total rate of deactivation of the excited donor. The rate of energy transfer between single donor and acceptor molecules is proportional to 1 /r6DA (Eq. (1.1)) this is a very... [Pg.36]

If the donor and acceptor molecules are chemically identical, then transfer from the excited molecule to the unexcited molecule of the pair can take place (more than once during an single excitation event—back and forth), provided that the spectroscopic requirements of equation 2 are valid. This is called homotransfer [5], The fluorescence lifetime and the fluorescence quantum yield do not change from that of the singly excited molecule. Because the probability of decay from the excited state does not depend on the... [Pg.60]

In this appendix, we will assume that a cell expressing donor- and acceptor molecules is excited at appropriate wavelength lfx and 2 x to image FRET. As detailed in the main text, three images are collected that allow independent estimates of cross talk magnitude to perform correction of leak-through ... [Pg.344]

Coulombic energy transfer is a consequence of mutual electrostatic repulsion between the electrons of the donor and acceptor molecules. As D relaxes to D, the transition dipole thus created interacts by Coulombic (electrostatic) repulsion with the transition dipole created by the simultaneous electronic excitation of A to A (Figure 6.9). [Pg.98]

FRET manifests itself through the quenching of donor fluorescence and a reduction of the fluorescence lifetime, accompanied by an increase in acceptor fluorescence emission. The efficiency of the energy-transfer process varies in proportion to the inverse sixth power of the distance separating the donor and acceptor molecules. Consequently, FRET measurements can be utilised as an effective molecular ruler for determining distances between molecules labelled with an appropriate donor and acceptor fluorophore, provided they are within lOnm of each other. [Pg.102]

As the donor and acceptor molecules approach each other closely so that their regions of electron density overlap, electrons can be exchanged between the two molecules. This mechanism is therefore called the exchange mechanism. The electron-exchange mechanism requires a close approach (1-1.5nm), though not necessarily actual contact,... [Pg.105]

Fig. 4.12. Energy level scheme of donor and acceptor molecules showing the coupled transitions in the case where vibrational relaxation is faster than energy transfer (very weak coupling) and illustration of the integral overlap between the emission spectrum of the donor and the absorption of the acceptor. Fig. 4.12. Energy level scheme of donor and acceptor molecules showing the coupled transitions in the case where vibrational relaxation is faster than energy transfer (very weak coupling) and illustration of the integral overlap between the emission spectrum of the donor and the absorption of the acceptor.
The Forster resonance energy transfer can be used as a spectroscopic ruler in the range of 10-100 A. The distance between the donor and acceptor molecules should be constant during the donor lifetime, and greater than about 10 A in order to avoid the effect of short-range interactions. The validity of such a spectroscopic ruler has been confirmed by studies on model systems in which the donor and acceptor are separated by well-defined rigid spacers. Several precautions must be taken to ensure correct use of the spectroscopic ruler, which is based on the use of Eqs (9.1) to (9.3) ... [Pg.249]

We have considered so far the energy transfer from a donor to a single acceptor. Extension to ensembles of donor and acceptor molecules distributed at random in an infinite volume will now be considered, paying special attention to the viscosity of the medium. Then, the effect of dimensionality and restricted geometry will be examined. Homotransfer among the donors or among the acceptors will be assumed to be negligible. [Pg.256]

For an ensemble of donor and acceptor molecules distributed at random in an infinite volume, it is easy to calculate the sum of the rate constants for transfer from donor to all acceptors because all donors of this ensemble are identical in the rapid diffusion limit ... [Pg.259]

Analytical expressions for the fluorescence decay in the case of RET between donor and acceptor molecules randomly distributed in various models of restricted geometries (spheres, cylinders, etc.) that mimic simple pores have been established by Klafter and Blumen (1985). The donor decay can be written in a form similar to that of Eq. (9.36) ... [Pg.261]

In addition to the determination of distances at a supramolecular level, RET can be used to demonstrate the mutual approach of a donor and an acceptor at a supramolecular level as a result of aggregation, association, conformational changes, etc. The donor and acceptor molecules are generally covalently linked to molecular, macromolecular or supramolecular species that move toward each other or move away. From the variations in transfer efficiency, information on the spatial relation between donor and acceptors can thus be obtained. Because of its simplicity, the steady-state RET-based method has been used in many diverse situations as shown below5 . [Pg.268]

Several experimental conditions must be realized for the application of Eq. (72). The donor and acceptor molecules should enter the channels at about the same rate, so that the assumptions made for the initial state are sufficiently well fulfilled. They should not be able to glide past each other once they are inside the channels. The crystals should be so long that molecules entering from both sides do not reach each other in the middle part of the channels during the time of observation. These conditions can be fulfilled for the donor/acceptor pair Py+/Ox+ in zeolite L. Moreover, different stages of the diffusion can be observed by means of an optical microscope. [Pg.54]


See other pages where Donor and acceptor molecules is mentioned: [Pg.3020]    [Pg.3020]    [Pg.3022]    [Pg.262]    [Pg.158]    [Pg.103]    [Pg.67]    [Pg.113]    [Pg.20]    [Pg.228]    [Pg.22]    [Pg.477]    [Pg.44]    [Pg.142]    [Pg.75]    [Pg.80]    [Pg.135]    [Pg.331]    [Pg.291]    [Pg.654]    [Pg.106]    [Pg.91]    [Pg.257]   


SEARCH



Acceptors molecules

Donor molecules

Donor-acceptor molecules

Donors and acceptors

© 2024 chempedia.info