Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Divinylbenzene, copolymerization

The most commonly used resins are gel type sulfonated cation exchangers or anion exchangers with a quaternary ammonium functional group. The exchange capacity of the resins used is generally higher than those used for ion chromatography. The resins may be either styrene-divinylbenzene copolymeric beads or polyacrylate beads. The diameter of the beads should be small and uniform. Resins with a 5 pm bead diameter are now available. [Pg.167]

A macroporous polystyrene-divinylbenzene copolymer, produced by copolymerizing a mixture of styrene and divinylbenzene, is dissolved in an organic liquid such as t-amyl alcohol or isooctane, which is a solvent for monomers. This solvent is unable to substantially swell the resulting copolymer. Macroporous cation-exchange beads are also produced from these macroporous copolymers (25,26). [Pg.8]

When, styrene, C6HSCH = CH2 is copolymerized in the presence of a few percent p-divinylbenzene, a hard, insoluble, cross-linked polymer is obtained. Show how this cross-linking of polystyrene chains occurs. [Pg.1222]

Supported Lewis acids are an interesting class of catalysts because of their operational simplicity, filterability and reusability. The polymer-bound iron Lewis-acid 53 (Figure 3.8) has been found [52] to be active in the cycloadditions of a, S-unsaturated aldehydes with several dienes. It has been prepared from (ri -vinylcyclopentadienyl)dicarbonylmethyliron which was copolymerized with divinylbenzene and then treated with trimethylsilyltriflate followed by THF. Some results of the Diels-Alder reactions of acrolein and crotonaldehyde with isoprene (2) and 2,3-dimethylbutadiene (4) are summarized in Equation 3.13. [Pg.115]

Cornejo et al. [65] reported the first immobihzation of pyridine-bis(oxa-zoline) chiral hgands and the use of the corresponding solid ruthenium complex in the model cyclopropanation test. They synthesized vinyl-PyBOx, the vinyl functionahty being introduced in the fourth position of the pyridine ring. This monomer was further homo- or copolymerized in the presence of styrene and divinylbenzene. The corresponding ruthenium catalysts proved... [Pg.113]

Yin et al. [73,74] prepared new microgel star amphiphiles and stndied the compression behavior at the air-water interface. Particles were prepared in a two-step process. First, the gel core was synthesized by copolymerization of styrene and divinylbenzene in diox-ane using benzoylperoxide as initiator. Microgel particles 20 run in diameter were obtained. Second, the gel core was grafted with acrylic or methacryUc acid by free radical polymerization, resulting in amphiphilic polymer particles. These particles were spread from a dimethylformamide/chloroform (1 4) solution at the air-water interface. tt-A cnrves indicated low compressibility above lOmNm and collapse pressnres larger than 40 mNm With increase of the hydrophilic component, the molecnlar area of the polymer and the collapse pressure increased. [Pg.216]

C13-0110. Copolymerization of styrene with a small amount of divinylbenzene gives a cross-linked polymer that is hard and insoluble. Draw a picture of this polymer that shows at least tw o cross-links. [Pg.968]

Nonlinear addition polymers are readily obtained by copolymerizing a divinyl compound (e.g., divinylbenzene) with the vinyl monomer (e.g., styrene), as already mentioned. Products so obtained exhibit the insolubility and other characteristics of space-network structures and are entirely analogous structurally to the space-network polymers produced by the condensation of polyfunctional compounds. Owing to... [Pg.54]

Fig. 137.—Equilibrium swelling ratio qm of poly-(methacrylic acid) gels prepared by copolymerizing methacrylic acid with 1, 2, and 4 percent (upper, middle, and lower curves, respectively) of divinylbenzene plotted against degree of neutralization i with sodium hydroxide. (Katchalsky, Lifson, and Eisenberg. )... Fig. 137.—Equilibrium swelling ratio qm of poly-(methacrylic acid) gels prepared by copolymerizing methacrylic acid with 1, 2, and 4 percent (upper, middle, and lower curves, respectively) of divinylbenzene plotted against degree of neutralization i with sodium hydroxide. (Katchalsky, Lifson, and Eisenberg. )...
The 1 2 complex of Hg2+ with the tacn derivative mono-N-(4-vinylbenzyl)-l,4,7-triazacyclono-nane copolymerizes with p-divinylbenzene to give an Hg-templated polymer which, after deme-talation with 6N HC1, is a highly selective gathering material for Hg2+ in competition with other transition metals like Cd2+, Ag+, Pb2+, Cu, and Fe3+ at low pH values.211... [Pg.1274]

The synthesis of the first polymer-supported chiral Mn-salen derivatives was reported independently by Sivaram171 and Minutolo.171-173 Different monomeric Jacobsen-type units, containing two polymerizable vinyl groups, were copolymerized with styrene and divinylbenzene to yield the corresponding cross-linked polymers as a monolithic compact block.174-176 The less mobile system (Figure 19) with no spacer between the aromatic ring and the polymer backbone is less enantioselective. [Pg.461]

Kureshy developed a polymer-based chiral Mn-salen complex (Figure 21). Copolymerization of styrene, divinylbenzene, and 4-vinylpyridine generated highly cross-linked (50%) porous beads loaded with pyridine ligands at 3.8 mmol g-1. Once the polymer was charged with the metal complex catalyst, enantioselective epoxidation of styrene derivatives was achieved with ee values in the range 16 46%. 79... [Pg.463]

In the early days of polymer science, when polystyrene became a commercial product, insolubility was sometimes observed which was not expected from the functionality of this monomer. Staudinger and Heuer [2] could show that this insolubility was due to small amounts of tetrafunctional divinylbenzene present in styrene as an impurity from its synthesis. As little as 0.02 mass % is sufficient to make polystyrene of a molecular mass of 2001000 insoluble [3]. This knowledge and the limitations of the technical processing of insoluble and non-fusible polymers as compared with linear or branched polymers explains why, over many years, research on the polymerization of crosslinking monomers alone or the copolymerization of bifunctional monomers with large fractions of crosslinking monomers was scarcely studied. [Pg.139]

Postpolymerization of difunctional monomers to effect star branching has been successfully applied in cationic polymerization, e.g. in the case of polyisobutylene initiated with 2-chloro-2,4,4,-trimethylpentane/TiCl4. Addition of divinylbenzene leads to star polymers [104], Vinyl ethers, when polymerized with HI/ZnI2 in toluene at — 40°C, can be copolymerized with divinylether... [Pg.83]

In contrast, monolithic materials are easily amenable to any format. This has been demonstrated by using short monolithic rods prepared by copolymerization of divinylbenzene and 2-hydroxyethyl methacrylate in the presence of specifically selected porogens [93]. Table 2 compares recoveries of substituted phenols from both the copolymer and poly(divinylbenzene) cartridges and clearly confirms the positive effect of the polar comonomer. [Pg.104]

Fig. 10. Scanning electron micrographs of monolithic poly(divinylbenzene) capillary column. Note that the porous monolith is surrounded by an impervious tubular outer polymer layer resulting from copolymerization of the monomer with the acryloyl moieties bound to the capillary wall. This layer minimizes any direct contact of the analytes with the surface of the fused-silica capillary... Fig. 10. Scanning electron micrographs of monolithic poly(divinylbenzene) capillary column. Note that the porous monolith is surrounded by an impervious tubular outer polymer layer resulting from copolymerization of the monomer with the acryloyl moieties bound to the capillary wall. This layer minimizes any direct contact of the analytes with the surface of the fused-silica capillary...
The corresponding catalytic version of this reaction was performed using either naphthalene- or biphenyl-supported polymers 594 or 595, respectively, which were prepared by cross-coupling copolymerization of 2-vinylnaphthalene or 4-vinylbiphenyl with vinyl-benzene and divinylbenzene promoted by AIBN in THF and polyvinyl alcohoP . These polymers have been used as catalysts (10%) in lithiation reactions involving either chlorinated functionalized compounds or dichlorinated materials in THF at —78°C and were re-used up to ten times without loss of activity, which is comparable to the use of the corresponding soluble arenes. [Pg.741]

The first case is the copolymerization of monomer A with diene BB where all the double bonds (i.e., the A double bond and both B double bonds) have the same reactivity. Methyl methacrylate-ethylene glycol dimethacrylate (EGDM), vinyl acetate-divinyl adipate (DVA), and styrene-p- or m-divinylbenzene (DVB) are examples of this type of copolymerization system [Landin and Macosko, 1988 Li et al., 1989 Storey, 1965 Ulbrich et al., 1977]. Since r = Yi, Fi = f and the extent of reaction p of A double bonds equals that of B double bonds. There are p[A] reacted A double bonds, p[B] reacted B double bonds, and p2[BB] reacted BB monomer units. [A] and [B] are the concentrations of A and B double bonds,... [Pg.521]


See other pages where Divinylbenzene, copolymerization is mentioned: [Pg.134]    [Pg.334]    [Pg.121]    [Pg.167]    [Pg.322]    [Pg.280]    [Pg.840]    [Pg.167]    [Pg.134]    [Pg.334]    [Pg.121]    [Pg.167]    [Pg.322]    [Pg.280]    [Pg.840]    [Pg.167]    [Pg.1109]    [Pg.373]    [Pg.424]    [Pg.490]    [Pg.276]    [Pg.8]    [Pg.222]    [Pg.85]    [Pg.391]    [Pg.67]    [Pg.417]    [Pg.27]    [Pg.502]    [Pg.113]    [Pg.453]    [Pg.138]    [Pg.1378]    [Pg.122]    [Pg.62]    [Pg.353]    [Pg.204]    [Pg.359]    [Pg.522]   


SEARCH



Divinylbenzene

Divinylbenzenes

Divinylbenzenes copolymerization

© 2024 chempedia.info