Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diterpene pathway

The earliest steps (MVA to GGPP) for polyisoprenoid biosynthesis are identical for all plants and animals (12,13). They involve the well-known diterpene pathway, MVA — MVAP — MVAPP — IPP + DMAPP — GPP — FPP — GGPP. The enzymes catalyzing these steps have been studied extensively, especially from animals (liver) and yeast, and to a more limited extent from higher plants. In some cases the enzymes have been purified to homogeneity most have been only partially purified. In both plants and animals a major branch at FPP leads to the production of squalene and the steroids. In plants, three major branches occur at GGPP, of which one leads to the carotenoids via phyto-ene, a second to the phytyl group of chlorophyll, and a third to the GAs. [Pg.59]

Fig. 1.4 Outline of terpenoid biosynthesis from isopentenyl diphosphate (IPP) via dimethylallyl diphosphate (DMAPP), gcranyl diphosphate (GPP), famesyl diphosphate (FPP) and geranylgcranyl diphosphate (GGPP). These reactions are catalyzed by isoprenyl diphosphate synthases and terpene synthases. The major products of the monoterpene, sesquiterpene, and diterpene pathways that constitute the oleoresm of Picea abies are listed. The general precursor IPP is derived either from the plastidial methylerythritol phosphate (MEP) pathway or the cytosolic mevalonaic pathway. Fig. 1.4 Outline of terpenoid biosynthesis from isopentenyl diphosphate (IPP) via dimethylallyl diphosphate (DMAPP), gcranyl diphosphate (GPP), famesyl diphosphate (FPP) and geranylgcranyl diphosphate (GGPP). These reactions are catalyzed by isoprenyl diphosphate synthases and terpene synthases. The major products of the monoterpene, sesquiterpene, and diterpene pathways that constitute the oleoresm of Picea abies are listed. The general precursor IPP is derived either from the plastidial methylerythritol phosphate (MEP) pathway or the cytosolic mevalonaic pathway.
Since GAs as diterpenes share many intermediates in the biosynthetic steps leading to other terpenoids, eg, cytokinins, ABA, sterols, and carotenoids, inhibitors of the mevalonate (MVA) pathway of terpene synthesis also inhibit GA synthesis (57). Biosynthesis of GAs progresses in three stages, ie, formation of / Akaurene from MVA, oxidation of /-kaurene to GA 2" hyde, and further oxidation of the GA22-aldehyde to form the different GAs more than 70 different GAs have been identified. [Pg.47]

In plant plastids, GGPP is formed from products of glycolysis and is eight enzymatic steps away from central glucose metabolism. The MEP pathway (reviewed in recent literature - ) operates in plastids in plants and is a preferred source (non-mevalonate) of phosphate-activated prenyl units (IPPs) for plastid iso-prenoid accumulation, such as the phytol tail of chlorophyll, the backbones of carotenoids, and the cores of monoterpenes such as menthol, hnalool, and iridoids, diterpenes such as taxadiene, and the side chains of bioactive prenylated terpenophe-nolics such as humulone, lupulone, and xanthohumol. The mevalonic pathway to IPP that operates in the cytoplasm is the source of the carbon chains in isoprenes such as the polyisoprene, rubber, and the sesquiterpenes such as caryophyllene. [Pg.360]

The biosynthesis of monoterpenes, the major components of peppermint essential oils, can be divided into four stages (Fig. 9.4). Stage 1 includes the formation of isopentenyl diphosphate (IPP) and dimethylallyl alcohol (DMAPP). In plants, two separate pathways are utilized for the synthesis of these universal C5 intermediates, with the cytosolic mevalonate pathway being responsible for the formation of sterols and certain sesquiterpenes, and the plastidial mevalonate-independent pathway being involved in the biosynthesis of isoprene, monoterpenes, certain sesquiterpenes, diterpenes, tetraterpenes, as well as the side chains of chlorophyll and plastoquinone.16 In peppermint oil gland secretory cells, however, the mevalonate pathway is blocked and the biosynthesis of monoterpenoid essential... [Pg.149]

Recently it was shown by radiolabeling studies that the formation of the serrulatane skeleton is catalyzed by the pseudopterosin diterpene cyclase, which can be considered as a key enzyme in terpene biosynthetic pathways (Scheme 2). The elisabethatriene cyclase is a monomer with a molecular mass of47kDa [25]. [Pg.13]

One of the best-characterized effectors and second messenger systems is the cAMP cascade that can be either activated or inhibited by neurotransmit-ter/neuropeptide receptors, including those implicated in anxiety/stress such as CRE Receptors that activate cAMP synthesis couple with the stimulatory G protein, Gsa, and those that inhibit this second messenger couple with the inhibitory G protein, Gia, and these either stimulate or inhibit adenylyl cyclase, the effector enzyme responsible for synthesis of cAMP (Duman and Nestler 1999). There are at least nine different forms of adenylyl cyclase that have been identified by molecular cloning, each with a unique distribution in the brain. The different types of adenylyl cyclase are activated by Gsa as well as the diterpene forskolin, but are differentially regulated by Gia, the Py subunits, Ca, and by phosphorylation. This provides for fine control of adenylyl cyclase enzyme activity and regulation by other effector pathways. [Pg.308]

The mevalonate-independent pathway is present in most bacteria and all phototropic organisms. In higher plants and most algae both pathways run independently. The mevalonate pathway is located in the cytoplasm and is responsible for the biosynthesis of most sesquiterpenoids. The mevalonate-independent pathway, in contrast, is restricted to the chloroplasts where plastid-related isoprenoids such as monoterpenes and diterpenes are biosynthesised via this pathway [43-45]. Figure 4.2 illustrates the interrelationships of both biosynthetic pathways connected to Fig. 4.1 [46]. [Pg.47]

In similar fashions, the core pathway up to C25 compounds (five isoprene units) is formed by sequential addition of C5 moieties derived from IPP to a starter unit derived from DMAPP. Thus, sesquiterpenes are formed form the precursor 2E, hS-farnesyl pyrophosphate (FPP), and diterpenes from 2E, 6E, IO -geranylgeranyl pyrophosphate (GGPP). The parents of triterpenes and tetraterpenes are formed by reductive coupling of two FPPs or GGPPs, respectively. Rubbers and other polyisoprenoids are produced from repeated additions of C5 units to the starter unit GGPP. [Pg.332]

Gershenzon, J. and Croteau, R. (1993). Terpenoid biosynthesis the basic pathway and formation of monoterpenes, sesquiterpenes and diterpenes. In Lipid Metabolism in Plants, ed. T. S. Moore Jr, pp. 339-388. Boca Raton, FL CRC Press. [Pg.170]

The diverse, widespread and exceedingly numerous class of natural products that are derived from a common biosynthetic pathway based on mevalonate as parent, are synonymously named terpenoids, terpenes or isoprenoids, with the important subgroup of steroids, sometimes singled out as a class in its own right. Monoterpenes, sesquiterpenes, diterpenes and triterpenes are ubiquitous in terrestrial organisms and play an essential role in life, as we know it. Although the study of terrestrial terpenes dates back to the last century, marine terpenes were not discovered until 1955. [Pg.687]

Using the same strategy, Benrezzouk et al. also reported a naphthoquinone diterpene, aethiopinone, from the roots of Salvia aethiopis L. (Labiatae), possessed 5-LOX inhibition activity with IC50 value of O.llpM without affecting COX and PLA2 pathways [140]. [Pg.690]

Figure 10.7 All terpenes are derived from allylic diphosphates which are polymers of repeating isopentyl units (IPP) put together by the action of prenyltransferases. In plants, IPP can be derived from the mevalonate biosynthetic pathway (a cytoplasmic pathway) or the methyl erythritol phosphate pathway (a plastidic pathway). Monoterpenes are then derived from the CIO precursor geranyl diphosphate (GPP), sesquiterpenes from the C15 precursor famesyl diphosphate (FPP), and diterpenes from the C20 precursor geranylgeranyl diphosphate (GGPP) by the action of terpene synthases or cyclases, which divert carbon into the specific branch pathways. Figure 10.7 All terpenes are derived from allylic diphosphates which are polymers of repeating isopentyl units (IPP) put together by the action of prenyltransferases. In plants, IPP can be derived from the mevalonate biosynthetic pathway (a cytoplasmic pathway) or the methyl erythritol phosphate pathway (a plastidic pathway). Monoterpenes are then derived from the CIO precursor geranyl diphosphate (GPP), sesquiterpenes from the C15 precursor famesyl diphosphate (FPP), and diterpenes from the C20 precursor geranylgeranyl diphosphate (GGPP) by the action of terpene synthases or cyclases, which divert carbon into the specific branch pathways.
Figure 12.2 Plastidic and cytoplasmic pathways of active zoapatle diterpenes. Figure 12.2 Plastidic and cytoplasmic pathways of active zoapatle diterpenes.

See other pages where Diterpene pathway is mentioned: [Pg.270]    [Pg.288]    [Pg.280]    [Pg.221]    [Pg.18]    [Pg.68]    [Pg.164]    [Pg.167]    [Pg.171]    [Pg.76]    [Pg.39]    [Pg.303]    [Pg.455]    [Pg.227]    [Pg.235]    [Pg.239]    [Pg.240]    [Pg.263]    [Pg.274]    [Pg.167]    [Pg.69]    [Pg.202]    [Pg.12]    [Pg.84]    [Pg.129]    [Pg.110]    [Pg.687]    [Pg.20]    [Pg.236]    [Pg.298]    [Pg.301]    [Pg.338]    [Pg.366]    [Pg.367]   
See also in sourсe #XX -- [ Pg.59 ]




SEARCH



Diterpenes

© 2024 chempedia.info