Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Disulfide bridging

The three dimensional shapes of many proteins are governed and stabilized by S—S bonds connecting what would ordinarily be remote segments of the molecule We 11 have more to say about these disulfide bridges m Chapter 27... [Pg.651]

Disulfide bridge (Section 27 7) An S—S bond between the sulfur atoms of two cysteine residues in a peptide or pro tein... [Pg.1281]

Tertiary structure also refers to the overall shape of a molecule, especially to structures stabilized by disulfide bridges (cystine) formed by the oxidation of cysteine mercapto groups. [Pg.19]

Equation (8.97) shows that the second virial coefficient is a measure of the excluded volume of the solute according to the model we have considered. From the assumption that solute molecules come into surface contact in defining the excluded volume, it is apparent that this concept is easier to apply to, say, compact protein molecules in which hydrogen bonding and disulfide bridges maintain the tertiary structure (see Sec. 1.4) than to random coils. We shall return to the latter presently, but for now let us consider the application of Eq. (8.97) to a globular protein. This is the objective of the following example. [Pg.557]

Disulfides. As shown in Figure 4, the and h-chains of insulin are connected by two disulfide bridges and there is an intrachain cycHc disulfide link on the -chain (see Insulin and other antidiabetic drugs). Vasopressin [9034-50-8] and oxytocin [50-56-6] also contain disulfide links (48). Oxidation of thiols to disulfides and reduction of the latter back to thiols are quite common and important in biological systems, eg, cysteine to cystine or reduced Hpoic acid to oxidized Hpoic acid. Many enzymes depend on free SH groups for activation—deactivation reactions. The oxidation—reduction of glutathione (Glu-Cys-Gly) depends on the sulfhydryl group from cysteine. [Pg.379]

Thaumatin. Thaumatin [53850-34-3] is a mixture of proteins extracted from the fmit of a West African plant, Thaumatococcus daniellii (Beimett) Benth. Work at Unilever showed that the aqueous extract contains two principal proteins thaumatin I and thaumatin II. Thaumatin I, mol wt 22,209, contains 207 amino acids in a single chain that is cross-linked with eight disulfide bridges. Thaumatin II has the same number of amino acids, but there are five sequence differences. Production of thaumatins via genetic engineering technology has been reported (99). [Pg.281]

The side groups of the amino acids vary markedly in size and chemical nature and play an important role in the chemical reactions of the fiber. For example, the basic groups (hisidine, arginine, and lysine) can attract acid (anionic) dyes, and in addition the side chains of lysine and hisidine are important sites for the attachment of reactive dyes. The sulfur-containing amino acid cysteine plays a very important role, because almost all of the cysteine residues in the fiber are linked in pairs to form cystine residues, which provide a disulfide bridge —S—S— between different polypeptide molecules or between segments of the same molecules as shown ... [Pg.343]

Two cysteine residues in different parts of the polypeptide chain but adjacent in the three-dimensional structure of a protein can be oxidized to form a disulfide bridge (Figure 1.4). The disulfide is usually the end product of air oxidation according to the following reaction scheme ... [Pg.5]

CH2SH + 1/2 O2 -CH2-S-S-CH2 + H2O This reaction requires an oxidative environment, and such disulfide bridges are usually not found in intracellular proteins, which spend their lifetime in an essentially reductive environment. Disulfide bridges do, however, occur quite frequently among extracellular proteins that are secreted from cells, and in eucaryotes, formation of these bridges occurs within the lumen of the endoplasmic reticulum, the first compartment of the secretory pathway. [Pg.5]

Kringle domains, which have a characteristic pattern of three internal disulfide bridges within a region of about 85 amino acid residues. [Pg.29]

Figure 5.19 Schematic picture of a single subunit of influenza virus hemagglutinin. The two polypeptide chains HAj and HA2 are held together by disulfide bridges. Figure 5.19 Schematic picture of a single subunit of influenza virus hemagglutinin. The two polypeptide chains HAj and HA2 are held together by disulfide bridges.
The thioredoxin domain (see Figure 2.7) has a central (3 sheet surrounded by a helices. The active part of the molecule is a Pa(3 unit comprising p strands 2 and 3 joined by a helix 2. The redox-active disulfide bridge is at the amino end of this a helix and is formed by a Cys-X-X-Cys motif where X is any residue in DsbA, in thioredoxin, and in other members of this family of redox-active proteins. The a-helical domain of DsbA is positioned so that this disulfide bridge is at the center of a relatively extensive hydrophobic protein surface. Since disulfide bonds in proteins are usually buried in a hydrophobic environment, this hydrophobic surface in DsbA could provide an interaction area for exposed hydrophobic patches on partially folded protein substrates. [Pg.97]

The polypeptide chain of chymotrypsinogen, the inactive precursor of chymotrypsin, comprises 245 amino acids. During activation of chymotrypsinogen residues 14-15 and 147-148 are excised. The remaining three polypeptide chains are held together by disulfide bridges to form the active chymotrypsin molecule. [Pg.210]

Figure 11.7 Schematic diagram of the structure of chymotrypsin, which is folded into two antiparallel p domains. The six p strands of each domain are red, the side chains of the catalytic triad are dark blue, and the disulfide bridges that join the three polypeptide chains are marked in violet. Chain A (green, residues 1-13) is linked to chain B (blue, residues 16-146) by a disulfide bridge between Cys 1 and Cys 122. Chain B is in turn linked to chain C (yellow, residues 149-245) by a disulfide bridge between Cys 136 and Cys 201. Dotted lines indicate residues 14-15 and 147-148 in the inactive precursor, chmotrypsinogen. These residues are excised during the conversion of chymotrypsinogen to the active enzyme chymotrypsin. Figure 11.7 Schematic diagram of the structure of chymotrypsin, which is folded into two antiparallel p domains. The six p strands of each domain are red, the side chains of the catalytic triad are dark blue, and the disulfide bridges that join the three polypeptide chains are marked in violet. Chain A (green, residues 1-13) is linked to chain B (blue, residues 16-146) by a disulfide bridge between Cys 1 and Cys 122. Chain B is in turn linked to chain C (yellow, residues 149-245) by a disulfide bridge between Cys 136 and Cys 201. Dotted lines indicate residues 14-15 and 147-148 in the inactive precursor, chmotrypsinogen. These residues are excised during the conversion of chymotrypsinogen to the active enzyme chymotrypsin.
Lysozyme from bacteriophage T4 is a 164 amino acid polypeptide chain that folds into two domains (Figure 17.3) There are no disulfide bridges the two cysteine residues in the amino acid sequence, Cys 54 and Cys 97, are far apart in the folded structure. The stability of both the wild-type and mutant proteins is expressed as the melting temperature, Tm, which is the temperature at which 50% of the enzyme is inactivated during reversible beat denat-uration. For the wild-type T4 lysozyme the Tm is 41.9 °C. [Pg.354]


See other pages where Disulfide bridging is mentioned: [Pg.119]    [Pg.1154]    [Pg.200]    [Pg.205]    [Pg.176]    [Pg.176]    [Pg.181]    [Pg.188]    [Pg.188]    [Pg.189]    [Pg.191]    [Pg.212]    [Pg.343]    [Pg.99]    [Pg.179]    [Pg.179]    [Pg.180]    [Pg.218]    [Pg.534]    [Pg.255]    [Pg.286]    [Pg.5]    [Pg.8]    [Pg.91]    [Pg.94]    [Pg.96]    [Pg.97]    [Pg.97]    [Pg.266]    [Pg.301]    [Pg.303]    [Pg.304]    [Pg.304]    [Pg.312]    [Pg.341]    [Pg.354]   
See also in sourсe #XX -- [ Pg.271 ]




SEARCH



Cross-bridge disulfide containing

Cysteine disulfide bridge formation

Cysteine disulfide bridges

Cysteine, biosynthesis disulfide bridges from

Disulfide bonds/bridges

Disulfide bridge formation

Disulfide bridge stabilization

Disulfide bridge, peptides and

Disulfide bridge-forming enzymes

Disulfide bridges

Disulfide bridges

Disulfide bridges cleavage

Disulfide bridges cleavage with performic acid

Disulfide bridges in proteins

Disulfide bridges interchain

Disulfide bridges intermolecular

Disulfide bridges intrachain

Disulfide bridges locating

Disulfide bridges reduction

Disulfide bridges, transferrins

Disulfide-bridged dimers

Insulin, disulfide bridges

Insulin, disulfide bridges human

Insulin, disulfide bridges sequence determination

Insulin, disulfide bridges structure

Keratan sulfate disulfide bridges

Oxidation, disulfide bridge formation

Oxytocin disulfide bridge

Peptides disulfide bridges

Peptides, detection disulfide bridges

Proteins disulfide bridges

Side chains disulfide bridge

Stability increased disulfide bridges

© 2024 chempedia.info