Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Distribution chromatograms

This procedure has been tested by applying it to known distribution chromatograms formed by blending of fractions and to NBS Standards 705 and 706 for which experimentally measured values of Mw, Mn> and [rj] are available. [Pg.171]

Testing the Chromatogram Resolution Procedure. Known Distribution Chromatograms. Several chromatograms of known distribution were prepared by selectively blending some of the PS fractions (Table II). These chromatograms were used to test the resolution procedure. [Pg.175]

The condensation process of PF resins can be followed by monitoring the increase in viscosity and by gel permeation chromatography (GPC) to measure the molar mass distribution. Chromatograms have been obtained by Duval et al. [122], Ellis and Steiner [127], Gobec et al. [128], Kim et al. [129], and Nieh and Sellers [130]. [Pg.892]

Column Efficiency. Under ideal conditions the profile of a solute band resembles that given by a Gaussian distribution curve (Fig. 11.1). The efficiency of a chromatographic system is expressed by the effective plate number defined from the chromatogram of a single band. [Pg.1105]

The basic premise of this method is that the magnitude of the detector output, as measured by hj for a particular fraction, is proportional to the weight of that component in the sample. In this sense the chromatogram itself presents a kind of picture of the molecular weight distribution. The following column entries provide additional quantification of this distribution, however. [Pg.644]

Fig. 14. Molecular weight characteristics of novolac resins. Shown is the size-exclusion chromatogram for a typical commercial novolac polymer. The unsymmetrical peak shape reflects the multimodal molecular weight distribution of the polymer. Fig. 14. Molecular weight characteristics of novolac resins. Shown is the size-exclusion chromatogram for a typical commercial novolac polymer. The unsymmetrical peak shape reflects the multimodal molecular weight distribution of the polymer.
The curves show that the peak capacity increases with the column efficiency, which is much as one would expect, however the major factor that influences peak capacity is clearly the capacity ratio of the last eluted peak. It follows that any aspect of the chromatographic system that might limit the value of (k ) for the last peak will also limit the peak capacity. Davis and Giddings [15] have pointed out that the theoretical peak capacity is an exaggerated value of the true peak capacity. They claim that the individual (k ) values for each solute in a realistic multi-component mixture will have a statistically irregular distribution. As they very adroitly point out, the solutes in a real sample do not array themselves conveniently along the chromatogram four standard deviations apart to provide the maximum peak capacity. [Pg.206]

The separation is already complete when detection is undertaken The solvent has been evaporated off, the substance is present finely distributed in the adsorbent For a given amount of substance the smaller the chromatogram zone the greater is the concentration and, hence, the detection sensitivity For this reason substances with low Rf values are more intensely colored than those present in the same quantity which migrate further... [Pg.78]

FIGURE 2.4 Calibration curve of dextran on Sephacryi S-300 SF. Calibration curves were calculated from one chromatogram of a broad MWD reference sample using data for the molecular mass distribution as obtained by a calibrated gel filtration column ( , upper curve) and on-line MALLS ( ). The calibration curve was found useful for estimating the size of globular proteins. [Reproduced from Hagel et al. (1993), with permission.]... [Pg.34]

Another TSK combination (precolumn -I- PWM -I 6000 -I 5000 -I- 4000 -I-3000) was tested on differences in separation performance between individual narrow distributed samples and mixtures of several narrow distributed samples. The result is summarized in Eig. 16.31 within experimental error the summed chromatograms (theory) of four narrow distributed glucans (dextran) match perfectly with the experimentally determined chromatogram of the mixture. The (theory/experimental) ratio, plotted for quantification of the match, in-... [Pg.492]

X 0.75 cm) Ve i = 28 ml = 50 ml eluent 0.05 M NaCI flow rate 0.80 ml/min detection Optilab 903 interferometric differential refractometer applied sample mass/volume 200 /tl of 2-mg/ml aqueous solutions sum of individual chromatograms (theory —) and (theory/experimental) ratio (—) plotted for quantification of deviations in separation performance between narrow distributed samples and broad distributed samples. [Pg.495]

Figure 10.3 Gas cliromatograms of a cold-pressed lemon oil obtained (a) with an SE-52 column in the stand-by position and (b) with the same column showing the five heart-cuts (c) shows the GC-GC chiral chromatogram of the ti ansfeired components. The asterisks in (b) indicate electric spikes coming from the valve switcliing. The conditions were as follows SE-52 pre-column, 30 m, 0.32 mm i.d., 0.40 - 0.45 p.m film tliickness cairier gas He, 90 KPa (stand-by position) and 170 KPa (cut position) oven temperature, 45 °C (6 min)-240 °C at 2 °C/min diethyl-tert-butyl-/3-cyclodextrin column, 25 m X 0.25 mm i.d., 0.25 p.m film thickness cairier gas He, 110 KPa (stand-by position) and 5 KPa (cut position) oven temperature, 45 °C (6 min), rising to 90 °C (10 min) at 2 °C/min, and then to 230 °C at 2 °C/min. Reprinted from Journal of High Resolution Chromatography, 22, L. Mondello et al, Multidimensional capillary GC-GC for the analysis of real complex samples. Part IV. Enantiomeric distribution of monoterpene hydrocarbons and monoterpene alcohols of lemon oils , pp. 350-356, 1999, with permission from Wiley-VCH. Figure 10.3 Gas cliromatograms of a cold-pressed lemon oil obtained (a) with an SE-52 column in the stand-by position and (b) with the same column showing the five heart-cuts (c) shows the GC-GC chiral chromatogram of the ti ansfeired components. The asterisks in (b) indicate electric spikes coming from the valve switcliing. The conditions were as follows SE-52 pre-column, 30 m, 0.32 mm i.d., 0.40 - 0.45 p.m film tliickness cairier gas He, 90 KPa (stand-by position) and 170 KPa (cut position) oven temperature, 45 °C (6 min)-240 °C at 2 °C/min diethyl-tert-butyl-/3-cyclodextrin column, 25 m X 0.25 mm i.d., 0.25 p.m film thickness cairier gas He, 110 KPa (stand-by position) and 5 KPa (cut position) oven temperature, 45 °C (6 min), rising to 90 °C (10 min) at 2 °C/min, and then to 230 °C at 2 °C/min. Reprinted from Journal of High Resolution Chromatography, 22, L. Mondello et al, Multidimensional capillary GC-GC for the analysis of real complex samples. Part IV. Enantiomeric distribution of monoterpene hydrocarbons and monoterpene alcohols of lemon oils , pp. 350-356, 1999, with permission from Wiley-VCH.
Figure 1. Chromatogram of fractions from countercurrent distribution of basic portion of barley extract... Figure 1. Chromatogram of fractions from countercurrent distribution of basic portion of barley extract...
The gel permeation chromatogram shown in Fig. 6 illustrates the purity of a block copolymer obtained by ion coupling. It is seen that about 5% of uncoupled block copolymer contaminates a triblock copolymer of narrow molecular weight distribution. The synthesis of star block polymers owes its recent development to the use of new coupling agents412. ... [Pg.34]

Gel Permeation Chromatography. The instrument used for GPC analysis was a Waters Associates Model ALC - 201 gel permeation chromatograph equipped with a R401 differential refractometer. For population density determination, polystyrene powder was dissolved in tetrahydrofuran (THF), 75 mg of polystyrene to SO ml THF. Three y -styragel columns of 10, 10, 10 A were used. Effluent flow rate was set at 2.2 ml/min. Total cumulative molar concentration and population density distribution of polymeric species were obtained from the observed chromatogram using the computer program developed by Timm and Rachow (16). [Pg.382]

The effect is that the polymer molecules are separated into fractions. These are measured by an appropriate detector located at the end of the column, and the detector records the response as a peak on a chart. The chromatogram thus consists of a series of peaks corresponding to different elution volumes, the shortest elution volume being due to the largest molar mass polymer molecules within the sample. Details of the molar mass distribution can be determined from the size and number of the individual peaks in the chromatogram. An example of a gel permeation chromatogram is shown as Figure 6.4. [Pg.91]

If Mark-Houwink coefficients were supplied at setup time, the chromatogram may be converted into the differential molecular weight distribution of the specimen. Various averages characterizing this molecular weight distribution are then calculated. The molecular weight distribution may be written to a file. [Pg.26]


See other pages where Distribution chromatograms is mentioned: [Pg.313]    [Pg.1052]    [Pg.1957]    [Pg.520]    [Pg.313]    [Pg.1052]    [Pg.1957]    [Pg.520]    [Pg.97]    [Pg.644]    [Pg.121]    [Pg.169]    [Pg.367]    [Pg.446]    [Pg.480]    [Pg.19]    [Pg.440]    [Pg.132]    [Pg.134]    [Pg.138]    [Pg.189]    [Pg.221]    [Pg.438]    [Pg.576]    [Pg.613]    [Pg.620]    [Pg.113]    [Pg.395]    [Pg.511]    [Pg.85]    [Pg.386]    [Pg.34]    [Pg.36]    [Pg.289]    [Pg.386]    [Pg.74]    [Pg.75]   
See also in sourсe #XX -- [ Pg.164 ]




SEARCH



Gaussian distributions chromatograms

© 2024 chempedia.info