Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Distillation columns multicomponent systems

Distillation Columns. Distillation is by far the most common separation technique in the chemical process industries. Tray and packed columns are employed as strippers, absorbers, and their combinations in a wide range of diverse appHcations. Although the components to be separated and distillation equipment may be different, the mathematical model of the material and energy balances and of the vapor—Hquid equiUbria are similar and equally appHcable to all distillation operations. Computation of multicomponent systems are extremely complex. Computers, right from their eadiest avadabihties, have been used for making plate-to-plate calculations. [Pg.78]

Most distillation systems ia commercial columns have Murphree plate efficiencies of 70% or higher. Lower efficiencies are found under system conditions of a high slope of the equiHbrium curve (Fig. lb), of high Hquid viscosity, and of large molecules having characteristically low diffusion coefficients. FiaaHy, most experimental efficiencies have been for biaary systems where by definition the efficiency of one component is equal to that of the other component. For multicomponent systems it is possible for each component to have a different efficiency. Practice has been to use a pseudo-biaary approach involving the two key components. However, a theory for multicomponent efficiency prediction has been developed (66,67) and is amenable to computational analysis. [Pg.170]

Total reflux exists in a distillation column, whether a binary or multicomponent system, when all the overhead vapor from the top tray or stage is condensed and returned to the top tray. Usually a column is brought to equilibrium at total reflux for test or for a temporary plant condition which requires discontinuing feed. Rather than shut down, drain and then re-establish operating conditions later, it is usually more convenient and requires less... [Pg.21]

Multicomponent distillations are more complicated than binary systems due primarily to the actual or potential involvement or interaction of one or more components of the multicomponent system on other components of the mixture. These interactions may be in the form of vapor-liquid equilibriums such as azeotrope formation, or chemical reaction, etc., any of which may affect the activity relations, and hence deviations from ideal relationships. For example, some systems are known to have two azeotrope combinations in the distillation column. Sometimes these, one or all, can be broken or changed in the vapor pressure relationships by addition of a third chemical or hydrocarbon. [Pg.68]

MCSTILL - Continuous Multicomponent Distillation Column System... [Pg.501]

In this chapter consideration is given to the theory of the process, methods of distillation and calculation of the number of stages required for both binary and multicomponent systems, and discussion on design methods is included for plate and packed columns incorporating a variety of column internals. [Pg.542]

Even if you were only half awake when you read the preeeding chapter, you should have recognized that the equations developed in the examples eonstituted parts of mathematical models. This chapter is devoted to more complete examples. We will start with simple systems and progress to more realistic and complex processes. The most complex example will be a nonideal, nonequimolal-overflow, multicomponent distillation column with a veiy large number of equations needed for a rigorous description of the system. [Pg.40]

Many industrial columns use temperatures for composition control because direct composition analyzers can be expensive and unreliable. Although temperature is uniquely related to composition only in a binary system (at known pressure), it is still often possible to use the temperatures on various trays up and down the column to maintain approximate composition control, even in multicomponent systems. Probably 75 percent of all distillation columns use temperature control of some tray to hold the composition profile in the column. This prevents the light-key (LK) impurities from dropping out the bottom and the heavy-key (HK) impurities from going overhead. [Pg.205]

In fact, through use of matrix models of mass transfer in multicomponent systems (as opposed to effective diffusivity methods) it is possible to develop methods for estimating point and tray efficiencies in multicomponent systems that, when combined with an equilibrium stage model, overcome some of the limitations of conventional design methods. The purpose of this chapter is to develop these methods. We look briefly at ways of solving the set of equations that model an entire distillation column and close with a review of experimental and simulation studies that have been carried out with a view to testing multicomponent efficiency models. [Pg.373]

Discuss how the fundamental models of mass transfer in Sections 12.1.7 (binary systems) and 12.2.4 (multicomponent systems) may be used to estimate mass transfer rates for use in a nonequilibrium simulation of an existing distillation column. Your essay should address the important question of how the model parameters are to be estimated. [Pg.503]

Can we do the internal stage-by-stage calculations first and then solve the overall balances To begin the stage-by-stage calculation procedure in a distillation column, we need to know all the compositions at one end of the column. For ternary systems with the variables specified as in Table 6.3, these compositions are unknown. To begin the analysis we would have to assume that one of them is known. Therefore, internal calculations for multicomponent distillation problems are necessarily by trial and error. In a ternary system, once an additional composition is assumed, both the overall and internal calculations are easily done. The results can then be compared and the assumed composition modified as needed until convergence is achieved. [Pg.367]

To illustrate the procedure, we consider a fairly complex process sketched in Fig. 6.4, which shows the process flowsheet and the nomenclature used. In the continuous stirred-tank reactor, a multicomponent, reversible, second-order reaction occurs in the liquid phase A + B C + D. The component volatilities are such that reactant A is the most volatile, product C is the next most volatile, reactant B has intermediate volatility, and product D is the heaviest component a/ > ac > olb > OiQ. The process flowsheet consists of a reactor that is coupled with a stripping column to keep reactant. A in the system, and two distillation columns to achieve the removal of products C and D and the recovery and recycle of reactant B. [Pg.190]

Extractive distillation is not limited to the separation of binary mixtures, but is also capable of removing particular classes of substances from multicomponent inixtiire.s, as for instance benzene from mineral oil fractions. Mixtures of saturated and imsaturated hydrocarbons having closely similar boiling points can be separated by extractive distillation with ketoesters [73]. Recently, the sei)aration of lower hydrocarbons CyCa has been gaining ground [74]. Garner et al. [75] studied the efficiency of packed columns in the extractive distillation of the system iiictliyl cyclohexane-toluene with derived equations for this process. [Pg.331]

Fidkowski, Z.T. and R. Agrawal, Multicomponent thermally coupled systems of distillation columns at minimum reflux. AIChE Journal, 2001, 47(12) 2713 2724. [Pg.14]

In the example distillation system considered in Chapters 3 and 4, we studied the binary propane/isobutane separation in a single distillation column. This is a fairly ideal system from the standpoint of vapor-liquid equilibrium (VLE), and it has only two components, a single feed and two product streams. In this chapter, we will show that the steady-state simulation methods can be extended to multicomponent nonideal systems and to more complex column configurations. [Pg.95]

Invariant Temperature Criterion With Both the Distillate and Bottoms Purities Fixed, Change the Feed Composition Over the Expected Range of Values. Select the Tray Where the Temperature Does Not Change as Feed Composition Changes. The difficulty with this method is that there may be no constant-temperature tray for all feed compositions changes. This is particularly true in multicomponent systems where the amounts of the nonkey components can vary and significantly affect tray temperatures, especially near the two ends of the column. [Pg.131]

This chapter introduces how continuous distillation columns work and serves as the lead to a series of nine chapters on distillation. The basic calculation procedures for binary distillation are developed in Chapter 4. Multicomponent distillation is introduced in Chapter 5. detailed conputer calculation procedures for these systems are developed in Chapter 6. and sinplified shortcut methods are covered in Chapter 7. More complex distillation operations such as extractive and azeotropic distillation are the subject of Chapter 8. Chapter 9 switches to batch distillation, which is commonly used for smaller systems. Detailed design procedures for both staged and packed columns are discussed in Chapter 10. Finally, Chapter 11 looks at the economics of distillation and methods to save energy (and money) in distillation systems. [Pg.122]

Mahajani S. (1999a). Design of reactive distillation columns for multicomponent kinetically controlled reactive systems. Chemical Engineering Science 54 (10), 1425-1430. 3.2.4, 3.2.4... [Pg.239]


See other pages where Distillation columns multicomponent systems is mentioned: [Pg.166]    [Pg.518]    [Pg.176]    [Pg.342]    [Pg.54]    [Pg.95]    [Pg.303]    [Pg.52]    [Pg.4]    [Pg.98]    [Pg.518]    [Pg.50]    [Pg.668]    [Pg.91]    [Pg.229]    [Pg.236]    [Pg.295]    [Pg.1438]    [Pg.1532]    [Pg.2]    [Pg.521]    [Pg.607]    [Pg.1435]    [Pg.1529]    [Pg.206]    [Pg.29]    [Pg.29]    [Pg.269]   
See also in sourсe #XX -- [ Pg.321 ]

See also in sourсe #XX -- [ Pg.321 ]

See also in sourсe #XX -- [ Pg.321 ]




SEARCH



Column system

Distillation multicomponent systems

Distillation system

Distilling columns

Multicomponent distillation

Systems multicomponent

© 2024 chempedia.info