Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Distillation column stills

Relief systems are expensive and introduce considerable environmental problems. Sometimes it is possibly to dispense with relief valves and all that comes after them by using stronger vessels, strong enough to withstand the highest pressures that can be reached. For example, if the vessel can withstand the pump delivery pressure, then a relief valve for overpressurization by the pump may not be needed. However, there may still be a need for a small relief device to guard against overpressurization in the event of a fire. It may be possible to avoid the need for a relief valve on a distillation column... [Pg.265]

It was noted earlier that dryers are quite difierent in character from both distillation and evaporation. However, heat is still taken in at a high temperature to be rejected in the dryer exhaust. The appropriate placement principle as applied to distillation columns and evaporators also applies to dryers. The plus/minus principle from Chap. 12 provides a general tool that can be used to understand the integration of dryers in the overall process context. If the designer has the freedom to manipulate drying temperature and gas flow rates, then these can be changed in accordance with the plus/minus principle in order to reduce overall utility costs. [Pg.359]

It follows that die separation of cadmium must be carried out in a distillation column, where zinc can be condensed at the lower temperamre of each stage, and cadmium is preferentially evaporated. Because of the fact that cadmium-zinc alloys show a positive departure from Raoult s law, the activity coefficient of cadmium increases in dilute solution as the temperature decreases in the upper levels of the still. The separation is thus more complete as the temperature decreases. [Pg.357]

Abtreib(e) apparat, m. distilling apparatus, still, -herd, m. refining hearth. pelle, /. refining cupel, -kolonne, /. separating column, distilling column, -mittel, n. expulsive agent abortifacient,... [Pg.12]

Consider the binary batch distillation column, represented in Fig. 3.58, and based on that of Luyben (1973, 1990). The still contains Mb moles with liquid mole fraction composition xg. The liquid holdup on each plate n of the column is M with liquid composition x and a corresponding vapour phase composition y,. The liquid flow from plate to plate varies along the column with consequent variations in M . Overhead vapours are condensed in a total condenser and the condensate collected in a reflux drum with a liquid holdup volume Mg and liquid composition xq. From here part of the condensate is returned to the top plate of the column as reflux at the rate Lq and composition xq. Product is removed from the reflux drum at a composition xd and rate D which is controlled by a simple proportional controller acting on the reflux drum level and is proportional to Md-... [Pg.204]

It was noted that dryers are quite different in character from both distillation and evaporation. However, heat is still taken in at a high temperature to be rejected in the dryer exhaust. The appropriate placement principle as applied to distillation columns and evaporators also applies to... [Pg.460]

In the atmospheric distillation process (Figure 2.1), heated crude oil is separated in a distillation column (distillation tower, fractionating tower, atmospheric pipe still) into streams which are then purified, transformed, adapted, and treated... [Pg.35]

Figure 3.14 shows a typical batch distillation column Fresh feed is charged into the still pot and heated until it begins to boil. The vapor works its way up the column and is condensed in the condenser. The condensate liquid runs into... [Pg.72]

Another type of nonlinear control can be achieved by using nonlinear transfonnations of the controlled variables. For example, in chemical reactor control the rate of reaction can be controller instead of the temperature. The two are, of course, related through the exponential temperature relationship. In high-purity distillation columns, a transformation of the type shown below can sometimes be useful to "linearize the composition signal and produce improved control while still using a conventional linear controller. [Pg.262]

All the obstacles in the path of distillation progress, however, were not equipment fabrication and design problems. It was discovered very early in the running of sour crudes that the shell still corroded severely at the vapor-liquid interface line and in that portion of the shell in contact with vapors. At the same time severe corrosion in pipe stills and tube stills, along with overheating and coking, resulted in expensive equipment failures. These problems started metallurgists on a chain of developments which produced the corrosion- and heat-resistant alloys used in modern oil heaters and the alloy liners used in distillation columns. [Pg.204]

Heat Requirement of the Process. Heat is required for vaporization in the extractive distillation column, and for the reconcentration of magnesium nitrate solution. Overall thermal effects caused by the magnesium nitrate cancel out, and the heat demand for the complete process depends on the amount of water being removed, the reflux ratio employed, and the terminal (condenser) conditions in distillation and evaporation. The composition and temperature of the mixed feed to the still influence the relative heat demands of the evaporation and distillation sections. For the concentration of 60 wt% HNO3 to 99.5 wt% HNO3 using a still reflux ratio of 3 1, a still pressure of 760 mm Hg, and an evaporator pressure of 100 mm Hg, the theoretical overall heat requirement is 1,034 kcal/kg HNO3. [Pg.143]

In the process using sulfuric acid (see Figure 1) this acid was, and in many instances still is, added to the weak nitric acid produced by an AOP before the mixed acid was fed to the top of a distillation column. The feed has been preheated in some processes to minimize the vapor load in the distillation column. Enough sulfuric acid was added to the feed so that the vapor leaving the top of the column was at least 98% nitric acid. Live steam was added to the base of the column to provide the heat for the column and the stripping vapor required to... [Pg.149]

The very first continuous distillation column was the patent still used to produce Scotch whiskey in the 1830s. It had 12 bubble-cap trays with weirs, downcomers, tray decks, and bubble caps with internal risers. Current trayed towers are quite similar. As most distillation towers have always been trayed rather than packed, one would have to conclude that trayed towers must have some sort of inherent advantage over packed towers. And this is indeed true, in a practical sense even though, in theory, a packed tower has greater capacity and superior separation efficiency than a trayed column. [Pg.73]

Operation of a batch distillation is an unsteady state process whose mathematical formulation is in terms of differential equations since the compositions in the still and of the holdups on individual trays change with time. This problem and methods of solution are treated at length in the literature, for instance, by Holland and Liapis (Computer Methods for Solving Dynamic Separation Problems, 1983, pp. 177-213). In the present section, a simplified analysis will be made of batch distillation of binary mixtures in columns with negligible holdup on the trays. Two principal modes of operating batch distillation columns may be employed ... [Pg.390]

Predictive method results are still compared to the Deaton and Frost data. It should be remembered, however, that while this study was both painstaking and at the state-of-the-art, the data were of somewhat limited accuracy, particularly the measurements of gas composition. As will be seen in Chapters 4 and 5, small inaccuracies in gas composition can dramatically affect hydrate formation temperatures and pressures. For example, Deaton and Frost were unable to distinguish between normal butane and iso-butane using a Podbielniak distillation column, and so used the sum of the two component mole fractions. Accurate composition measurement techniques such as chromatography did not come into common usage until early in the 1960s. [Pg.9]

The high efficiency and small pressure drop of the spinning-band columns (Fig. 2.107) makes them very suitable for precision vacuum fractional distillation. The still-head is provided with a type of Perkin triangle assembly which allows the receivers to be changed without disturbing the column equilibrium. [Pg.185]


See other pages where Distillation column stills is mentioned: [Pg.34]    [Pg.251]    [Pg.156]    [Pg.359]    [Pg.12]    [Pg.983]    [Pg.494]    [Pg.417]    [Pg.256]    [Pg.629]    [Pg.823]    [Pg.359]    [Pg.578]    [Pg.728]    [Pg.56]    [Pg.213]    [Pg.388]    [Pg.225]    [Pg.226]    [Pg.228]    [Pg.9]    [Pg.10]    [Pg.78]    [Pg.35]    [Pg.88]    [Pg.531]    [Pg.137]    [Pg.193]    [Pg.891]    [Pg.975]    [Pg.823]    [Pg.136]    [Pg.171]   
See also in sourсe #XX -- [ Pg.226 , Pg.228 ]




SEARCH



Distilling columns

© 2024 chempedia.info