Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dissociation alkali metals

Strong and Weak Bases Just as the acidity of an aqueous solution is a measure of the concentration of the hydronium ion, H3O+, the basicity of an aqueous solution is a measure of the concentration of the hydroxide ion, OH . The most common example of a strong base is an alkali metal hydroxide, such as sodium hydroxide, which completely dissociates to produce the hydroxide ion. [Pg.141]

This review is structured as follows. In the next section we present the theory for adsorbates that remain in quasi-equilibrium throughout the desorption process, in which case a few macroscopic variables, namely the partial coverages 0, and their rate equations are needed. We introduce the lattice gas model and discuss results ranging from non-interacting adsorbates to systems with multiple interactions, treated essentially exactly with the transfer matrix method, in Sec. II. Examples of the accuracy possible in the modehng of experimental data using this theory, from our own work, are presented for such diverse systems as multilayers of alkali metals on metals, competitive desorption of tellurium from tungsten, and dissociative... [Pg.440]

Many of the ionic fiuorides of M, M and M dissolve to give highly conducting solutions due to ready dissociation. Some typical values of the solubility of fiuorides in HF are in Table 17.11 the data show the expected trend towards greater solubility with increase in ionic radius within the alkali metals and alkaline earth metals, and the expected decrease in solubility with increase in ionic charge so that MF > MF2 > MF3. This is dramatically illustrated by AgF which is 155 times more soluble than AgF2 and TIF which is over 7000 times more soluble than TIF3. [Pg.817]

In the meantime, we believe that the best prediction of the toxicity of an ionic liquid of type [cation] [anion] can be derived from the often well known toxicity data for the salts [cation]Cl and Na[anion]. Since almost all chemistry in nature takes place in aqueous media, the ions of the ionic liquid can be assumed to be present in dissociated form. Therefore, a reliable prediction of ionic liquids HSE data should be possible from a combination of the loiown effects of the alkali metal and chloride salts. Already from these, very preliminary, studies, it is clear that HSE considerations will be an important criterion in selection and exclusion of specific ionic liquid candidates for future large-scale, technical applications. [Pg.30]

For alkali modified noble and sp-metals (e.g. Cu, Al, Ag and Au), where the CO adsorption bond is rather weak, due to negligible backdonation of electronic density from the metal, the presence of an alkali metal has a weaker effect on CO adsorption. A promotional effect in CO adsorption (increase in the initial sticking coefficient and strengthening of the chemisorptive CO bond) has been observed for K- or Cs-modified Cu surfaces as well as for the CO-K(or Na)/Al(100) system.6,43 In the latter system dissociative adsorption of CO is induced in the presence of alkali species.43... [Pg.39]

L.J. Whitman, and W. Ho, The kinetics and mechanisms of alkali metal-promoted dissociation A time resolved study of NO adsorption and reaction on potassium-precovered Rh(100), J. Chem. Phys. 89(12), 7621-7645 (1988). [Pg.86]

The interaction of two alkali metal atoms is to be expected to be similar to that of two hydrogen atoms, for the completed shells of the ions will produce forces similar to the van der Waals forces of a rare gas. The two valence electrons, combined symmetrically, will then be shared between the two ions, the resonance phenomenon producing a molecule-forming attractive force. This is, in fact, observed in band spectra. The normal state of the Na2 molecule, for example, has an energy of dissociation of 1 v.e. (44). The first two excited states are similar, as is to be expected they have dissociation energies of 1.25 and 0.6 v.e. respectively. [Pg.59]

Since the synthesis temperatures are higher than the dissociation temperatures of the phases that are formed (at a pressure of lO N m ), it is necessary to react the alkali metal with boron under metal pressure in excess of that defined by Eq. (a), in sealed vessels. The alkali metal is present as a liquid in equilibrium with the vapor phase, the pressure of which is determined by the T of the coldest point. This pressure (greater the more volatile the metal) favors the synthetic reaction relative to the reverse dissociation reaction. [Pg.261]

The problems raised by the preparation of some rare-earth borides such as SmB4, YbB4 and TmB2 are comparable to those found for the alkali borides from the point of view of the volatility of the metals. They dissociate through metal evaporation, yielding boron-rich borides as indicated in 6.7.2.4. [Pg.262]

The viscosity and non-Newtonian flooding characteristics of the polymer solutions decrease significantly in the presence of inorganic salts, alkali silicates, and multivalent cations. The effect can be traced back to the repression of the dissociation of polyelectrolytes, to the formation of a badly dissociating polyelectrolyte metal complex, and to the separation of such a complex fi"om the polymer solution [1054]. [Pg.206]

In solutions neither H+ nor e can exist in a free state they will be donated only if they are accepted within the solution, e.g., by another acceptor, which may be the solvent and thus cause solvation here the mere solvation of electrons is an exceptional case, but may occur, e.g., in liquid ammonia, where according to Kraus82 the strongly reducing alkali metals dissolve while dissociating into cations M+ and solvated electrons e, which, however, are soon converted into NH2" and H2 gas. Further, from the analogy with acid-base reactions and the definition of... [Pg.292]

The dissociation rates for a number of alkali metal cryptates have been obtained in methanol and the values combined with measured stability constants to yield the corresponding formation rates. The latter increase monotonically with increasing cation size (with cryptand selectivity for these ions being reflected entirely in the dissociation rates - see later) (Cox, Schneider Stroka, 1978). [Pg.199]

Table 7.1. Formation (kf) and dissociation (kd) rate constants for the alkali metal complexes of the cryptands of type (213) in methanol at 25 °C (Cox, Schneider Stroka, 1978). Table 7.1. Formation (kf) and dissociation (kd) rate constants for the alkali metal complexes of the cryptands of type (213) in methanol at 25 °C (Cox, Schneider Stroka, 1978).
Figure 7.4 Thermodynamic data needed in evaluation of the enthalpy of formation of MX(s). (a) Lattice enthalpy of sodium halides (b) lattice enthalpy of alkali iodides (c) electron gain and dissociation enthalpies of halides (d) ionization and atomization enthalpies of alkali metals. Figure 7.4 Thermodynamic data needed in evaluation of the enthalpy of formation of MX(s). (a) Lattice enthalpy of sodium halides (b) lattice enthalpy of alkali iodides (c) electron gain and dissociation enthalpies of halides (d) ionization and atomization enthalpies of alkali metals.
Larger differences are observed when comparing the enthalpy of formation of the different halides of a given alkali metal. The enthalpy of formation of gaseous halide ions is exothermic since the exothermic electron gain enthalpy in absolute value is larger than the endothermic dissociation enthalpy. Furthermore, the enthalpy of formation of gaseous halide ions becomes less favourable with... [Pg.203]

The alkali metal cyanides are very soluble in water. As a result, they readily dissociate into their respective anions and cations when released into water. Depending on the pH of the water, the resulting cyanide ion may then form hydrogen cyanide or react with various metals in natural water. The proportion of hydrogen cyanide formed from soluble cyanides increases as the water pH decreases. At pH <7, >99% of the cyanide ions in water is converted to hydrogen cyanide (Towill et al. 1978). As the pH increases, cyanide ions in the water may form complex metallocyanides in the presence of excess cyanides however, if metals are prevalent, simple metal cyanides are formed. Unlike water-soluble alkali metal cyanides, insoluble metal cyanides such as are not expected to degrade to hydrogen cyanide (Callahan et al. 1979). [Pg.169]

Thus, in a medium of low dielectric constant the ions will undergo ion association. Associated ions, such as ion pairs of 1 1 electrolytes will not contribute to the conductivity of the solution at low field strengths. Furthermore, Coulomb s law explains why ions of equal charge but of different size are associated to a different degree in a medium of given dielectric constant a compound consisting of big ions is more dissociated than one with small ions cesium hydroxide is a stronger base than potassium hydroxide. On the other hand, various halides of the alkali metal ions do not obey this law 2>. [Pg.65]


See other pages where Dissociation alkali metals is mentioned: [Pg.197]    [Pg.197]    [Pg.346]    [Pg.2]    [Pg.74]    [Pg.66]    [Pg.74]    [Pg.83]    [Pg.114]    [Pg.424]    [Pg.445]    [Pg.106]    [Pg.172]    [Pg.208]    [Pg.163]    [Pg.42]    [Pg.87]    [Pg.75]    [Pg.350]    [Pg.18]    [Pg.268]    [Pg.32]    [Pg.342]    [Pg.190]    [Pg.20]    [Pg.385]    [Pg.422]    [Pg.207]    [Pg.321]    [Pg.13]    [Pg.86]    [Pg.358]    [Pg.346]    [Pg.24]   
See also in sourсe #XX -- [ Pg.70 ]

See also in sourсe #XX -- [ Pg.70 ]




SEARCH



© 2024 chempedia.info