Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dispersed phase definition

An aqueous colloidal polymeric dispersion by definition is a two-phase system comprised of a disperse phase and a dispersion medium. The disperse phase consists of spherical polymer particles, usually with an average diameter of 200-300 nm. According to their method of preparation, aqueous colloidal polymer dispersions can be divided into two categories (true) latices and pseudolatices. True latices are prepared by controlled polymerization of emulsified monomer droplets in aqueous solutions, whereas pseudolatices are prepared starting from already polymerized macromolecules using different emulsification techniques. [Pg.274]

Microemulsions are a convenient medium for preparing microgels in high yields and rather uniform size distribution. The name for these special emulsions was introduced by Schulman et al. [48] for transparent systems containing oil, water and surfactants, although no precise and commonly accepted definitions exist. In general a microemulsion may be considered as a thermodynamically stable colloidal solution in which the disperse phase has diameters between about 5 to lOOnm. [Pg.143]

Alternatively, the dispersed phase is chosen because, by definition, it will not contain droplets of the continuous phase. In this way the dispersed phase, after settling, will not entrain the continuous phase and entrainment losses from the settler will be reduced. [Pg.361]

When chloro-octadecane was found to give the same result as a so-called cosurfactant, an argument arose in terms of the real role of this highly hydrophobic compound because it is not surface active and has no cooperation with surfactant. Taking account of these systems, the definition of miniemulsion polymerization will be revised to the polymerization in which a water-insoluble compound in the dispersed phase retards or inhibits diffusion degradation of the emulsion. ... [Pg.605]

For simple fluids, also known as Newtonian fluids, it is easy to predict the ease with which they will be poured, pumped, or mixed in either an industrial or end-use situation. This is because the shear viscosity or resistance to flow is a constant at any given temperature and pressure. The fluids that fall into this category are few and far between, because they are of necessity simple in structure. Examples are water, oils, and sugar solutions (e.g., honey unit hi.3), which have no dispersed phases and no molecular interactions. All other fluids are by definition non-Newtonian, so the viscosity is a variable, not a constant. Non-Newtonian fluids are of great interest as they encompass almost all fluids of industrial value. In the food industry, even natural products such as milk or polysaccharide solutions are non-Newtonian. [Pg.1143]

Emulsions are colloidal dispersions of liquid droplets in another liquid phase, sometimes stabilized by surface active agents. Emulsions thus consist of a discontinuous phase, dispersed in a continuous phase. The most common types of emulsions are water-in-oil (W/O) in which oil is the continuous phase, and oil-in-water (OAV) in which water forms the continuous phase. However, this traditional definition of an emulsion is too narrow to include most food emulsions. For example, in foods the dispersed phase may be partially solidified, as in dairy products or the continuous phase may contain crystalline material, as in ice cream. It may also be a gel, as in several desserts. In addition to this, air bubbles may have been incorporated to produce the desired texture. [Pg.151]

Microscopy in Food Science is in an exciting state of flux. Traditional techniques of specimen preparation and observation will continue to give essential data on the structure of foods. However, the emphasis in the future will probably lie in the development of faster methods and in the quantification of individual components, both aiming at definition of structre /function relationships. This will be true of particulates as they relate to sensory scores and to the characterization of dispersed phases in emulsions and foams. At the same time, the use of microchemical methods should become more common as a means of... [Pg.271]

Based on the above-mentioned assumptions, the mass, momentum and energy balance equations for the gas and the dispersed phases in two-dimensional, two-phase flow were developed [14], In order to solve the mass, momentum and energy balance equations, several complimentary equations, definitions and empirical correlations were required. These were presented by [14], In order to obtain the water vapor distribution the gas phase the water vapor diffusion equation was added. During the second drying period, the model assumed that the particle consists of a dry crust surrounding a wet core. Hence, the particle is characterized by two temperatures i.e., the particle s crust and core temperatures. Furthermore, it was assumed that the heat transfer from the particle s cmst to the gas phase is equal to that transferred from the wet core to the gas phase i.e., heat and mass cannot be accumulated in the particle cmst, since all the heat and the mass is transferred by diffusion through the cmst from the wet core to the surrounding gas. Based on this assumption, additional heat balance equation was written. [Pg.188]

The particles in a colloidal dispersion are sufficiently large for definite surfaces of separation to exist between the particles and the medium in which they are dispersed. Simple colloidal dispersions are, therefore, two-phase systems. The phases are distinguished by the terms dispersed phase (for the phase forming the particles) and dispersion medium (for the medium in which the particles are distributed) - see Table 1.1. The physical nature of a dispersion depends, of course, on the respective roles of the constituent phases for example, an oil-in-water (O/W) emulsion and a water-in-oil (W/O) emulsion could have almost the same overall composition, but their physical properties would be notably different (see Chapter 10). [Pg.3]

Simple colloidal dispersions are two-phase systems, comprising a dispersed phase of small particles, droplets or bubbles, and a dispersion medium (or dispersing phase) surrounding them. Although the classical definition of colloidal species (droplets, bubbles, or particles) specifies sizes of between one nanometre and one micrometre, in dealing with practical applications the upper size limit is frequently extended to tens or even hundreds of micrometres. For example, the principles of colloid science can be usefully applied to emulsions whose droplets exceed the 1 tm size limit by several orders of magnitude. At the other extreme, the field of nano-... [Pg.2]

It is possible to define an evaluation index for the mixing state by using the definition of multi-component mixedness in the previous section. The following discussion focuses on the mixing state of the continuous phase and the dispersed phase with a particle size distribution. [Pg.74]

The distribution of the dispersed particle size is divided into m - 1 groups in the order of size, and each group is considered to be individual component. Additionally, the continuous phase is treated as another component. From this consideration, the mixing can be treated as m-component mixing, and the multi-component mixedness defined by Eq. (2.43) in the previous section can be applied. The extended definition of mixedness for the mixing of the continuous phase and dispersion phase can be expressed as... [Pg.74]

Formulations have been developed where small rubber domains of a definite size and shape are formed in situ during cure of the epoxy matrix. The domains cease growing at gelation. After cure is complete, the adhesive consists of an epoxy matrix with embedded rubber particles. The formation of a fully dispersed phase depends on a delicate balance between the miscibility of the elastomer, or its adduct with the resin, with the resin-hardener mixture and appropriate precipitation during the crosslinking reaction. [Pg.147]

Definition and Classification of Emulsions. Colloidal droplets (or particles or bubbles), as they are usually defined, have at least one dimension between about 1 and 1000 nm. Emulsions are a special kind of colloidal dispersion one in which a liquid is dispersed in a continuous liquid phase of different composition. The dispersed phase is sometimes referred to as the internal (disperse) phase, and the continuous phase as the external phase. Emulsions also form a rather special kind of colloidal system in that the droplets often exceed the size limit of 1000 nm. In petroleum emulsions one of the liquids is aqueous, and the other is hydrocarbon and referred to as oil. Two types of emulsion are now readily distinguished in principle, depending upon which kind of liquid forms the continuous phase (Figure 2) ... [Pg.5]

In (3.427) the dispersed phase velocity occurs as an undetermined variable. The phasic velocities are related to the mixture velocity through the mixture velocity definition (3.421). The dispersed phase velocity is computed from the continuous phase velocity Vc and a relative (slip) velocity v fc, in accordance with the definitions ... [Pg.468]

The transport equations appearing in macroscale models can be derived from the kinetic equation using the definition of the moment of interest. For example, if the moment of interest is the disperse-phase volume fraction, then it suffices to integrate over the mesoscale variables. (See Section 4.3 for a detailed discussion of this process.) Using the velocity-distribution function from Section 1.2.2 as an example, this process yields... [Pg.21]

In the particle-based definition of the NDF, we begin at the microscale and write a dynamic equation for the rate of change of the disperse-phase particle properties at the mesoscale. The simplest system, which we consider first, is a collection of interacting particles in a vacuum wherein the particles interact through collisions and short-range forces. Such a system is referred to as a granular system. We then consider a disperse two-phase system, wherein the particles are dispersed in a fluid. [Pg.102]


See other pages where Dispersed phase definition is mentioned: [Pg.654]    [Pg.110]    [Pg.355]    [Pg.300]    [Pg.301]    [Pg.217]    [Pg.15]    [Pg.31]    [Pg.122]    [Pg.483]    [Pg.22]    [Pg.96]    [Pg.1548]    [Pg.333]    [Pg.146]    [Pg.167]    [Pg.376]    [Pg.808]    [Pg.5]    [Pg.5]    [Pg.31]    [Pg.34]    [Pg.41]    [Pg.117]   
See also in sourсe #XX -- [ Pg.2 ]

See also in sourсe #XX -- [ Pg.639 ]




SEARCH



Disperse phase

Dispersing definitions

Dispersion definition

Dispersive phase

Dispersivity definition

Phase dispersion

Phase, definition

© 2024 chempedia.info